Journal of Engineering and Technology Revolution
Open Access | Peer-reviewed | Fast Publication Guest Editor: Dr. Bahtiyar Dursun
ISSN 2435-7278
DOI Index 10.37357/1068/jetr
Journal of Engineering and Technology Revolution (ISSN 2435-7278)

The Journal of Engineering and Technology Revolution (JETR) is a peer-reviewed publication that serves as an international forum for researchers, scholars, scientists, engineers, and field practitioners in diverse engineering and technology fields.

JETR publishes novel research, innovative ideas, and state-of-the-art findings in both theoretical and experimental studies. The journal emphasizes sustainability outreach, supporting concepts, approaches, practices, and studies within engineering and technology that align with the Sustainable Development Goals (SDGs).

JETR invites high-quality submissions, including original research, review articles, letters, reports, case studies, methodologies, lessons learned, commentaries, communications, editorials, technical notes, and book reviews. Topics of interest include, but are not limited to:

  • Agricultural engineering
  • Biomedical engineering
  • Chemical engineering
  • Civil engineering
  • Computer engineering
  • Communication engineering
  • Electrical engineering
  • Energy engineering
  • Environmental engineering
  • Food industry engineering
  • Information technology engineering
  • Industrial engineering
  • Innovative engineering
  • Intelligent technologies engineering
  • Mechanical engineering
  • Mining engineering
  • Mobile and wireless engineering
  • Nanotechnology engineering
  • Applied science
  • Applied chemistry
  • Applied mathematics
  • Applied physics
  • Engineering policies
  • Engineering strategies

 Journal Article   Open Access   Published  Crossmark
Analysis of digital platforms’ business models and their applications in the 4th industrial revolution Shenkoya T.
Journal of Engineering and Technology Revolution (ISSN 2435-7278), 2022, 3 (1): 1-12  DOI 10.37357/1068/jetr/3.1.01

Abstract
PDF
Citation
Authors
References
Acknowledgment

Digital revolution, as a result of the fourth industrial revolution, is changing the way people live and conduct their business. Its promise of sustainability is building optimism amongst users. However, there is a lack of research in understanding how digital platform business models can be tailored for use in existing businesses and how this technology can be used to revolutionize new businesses. This study conducted a systematic literature review to create a deeper understanding of the technology of digital platform business models and their characteristics and application. The results of this study are used to develop a hybrid structure of the digital platform business models and their components. Also, this study identified the critical elements of the cyber-physical system. Herein, the core, trendy, intermittent, and emergent keywords relating to digital platform business models are placed and analyzed. This study contributed to the body of knowledge by an in-depth understanding of digital platform business models and their relevance in the fourth industrial revolution by removing barriers that may limit their use.

 

Temitayo Shenkoya 
Science and Technology Knowledge Research Institute, Chungnam National University (CNU), Daejeon, South Korea

  1. [1] David LO, Nwulu NI, Aigbavboa CO, Adepoju OO (2022) “Integrating fourth industrial revolution (4IR) technologies into the water, energy & food nexus for sustainable security: A bibliometric analysis” J Clean Prod (vol. 363, pp. 132522) https://doi.org/10.1016/j.jclepro.2022.132522
  2. [2] Carvalho N, Chaim O, Cazarini E, Gerolamo M (2018) “Manufacturing in the fourth industrial revolution: A positive prospect in Sustainable Manufacturing” Procedia Manuf (vol. 21, pp. 671–678) https://doi.org/10.1016/j.promfg.2018.02.170
  3. [3] Hedman J, Kalling T (2003) “The business model concept: theoretical underpinnings and empirical illustrations” Eur J Inf Syst (vol. 12, no. 1, pp. 49–59) https://doi.org/10.1057/palgrave.ejis.3000446
  4. [4] Täuscher K, Laudien SM (2018) “Understanding platform business models: A mixed methods study of marketplaces” Eur Manag J (vol. 36, no. 3, pp. 319–329) https://doi.org/10.1016/j.emj.2017.06.005
  5. [5] Geissdoerfer M, Pieroni MPP, Pigosso DCA, Soufani K (2020) “Circular business models: A review” J Clean Prod (vol. 277, pp. 123741) https://doi.org/10.1016/j.jclepro.2020.123741
  6. [6] Lüdeke-Freund F, Carroux S, Joyce A, Massa L, Breuer H (2018) “The sustainable business model pattern taxonomy - 45 patterns to support sustainability-oriented business model innovation” Sustain Prod Consum (vol. 15, pp. 145–162) https://doi.org/10.1016/j.spc.2018.06.004
  7. [7] Wiener M, Saunders C, Marabelli M (2020) “Big-data business models: A critical literature review and multiperspective research framework” J Inf Technol (vol. 35, no. 1, pp. 66–91) https://doi.org/10.1177/0268396219896811
  8. [8] Gregurec I, Tomičić Furjan M, Tomičić-Pupek K (2021) “The Impact of COVID-19 on Sustainable Business Models in SMEs” Sustainability (vol. 13, no. 3, pp. 1098) https://doi.org/10.3390/su13031098
  9. [9] Wiener M, Saunders C, Marabelli M (2019) “Big-Data Business Models: A Critical Literature Review and Multi-Perspective Research Framework” https://doi.org/10.2139/ssrn.3494870
  10. [10] Galvão GDA, Homrich AS, Geissdoerfer M, Evans S, Ferrer PS scoleze, et al. (2020) “Towards a value stream perspective of circular business models” Resour Conserv Recycl (vol. 162, pp. 105060) https://doi.org/10.1016/j.resconrec.2020.105060
  11. [11] Fehrer JA, Woratschek H, Brodie RJ (2018) “A systemic logic for platform business models” J Serv Manag (vol. 29, no. 4, pp. 546–568) https://doi.org/10.1108/JOSM-02-2017-0036
  12. [12] Luz Martín-Peña M, Díaz-Garrido E, Sánchez-López JM (2018) “The digitalization and servitization of manufacturing: A review on digital business models” Strateg Change (vol. 27, no. 2, pp. 91–99) https://doi.org/10.1002/jsc.2184
  13. [13] Frank AG, Mendes GHS, Ayala NF, Ghezzi A (2019) “Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective” Technol Forecast Soc Change (vol. 141, pp. 341–351) https://doi.org/10.1016/j.techfore.2019.01.014
  14. [14] Parida V, Sjödin D, Reim W (2019) “Reviewing Literature on Digitalization, Business Model Innovation, and Sustainable Industry: Past Achievements and Future Promises” Sustainability (vol. 11, no. 2, pp. 391) https://doi.org/10.3390/su11020391
  15. [15] Ghobakhloo M (2020) “Industry 4.0, digitization, and opportunities for sustainability” J Clean Prod (vol. 252, pp. 119869) https://doi.org/10.1016/j.jclepro.2019.119869
  16. [16] Ivanov D, Dolgui A, Sokolov B (2019) “The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics” Int J Prod Res (vol. 57, no. 3, pp. 829–846) https://doi.org/10.1080/00207543.2018.1488086
  17. [17] Wang M, Wang CC, Sepasgozar S, Zlatanova S (2020) “A Systematic Review of Digital Technology Adoption in Off-Site Construction: Current Status and Future Direction towards Industry 4.0” Buildings (vol. 10, no. 11, pp. 204) https://doi.org/10.3390/buildings10110204
  18. [18] Kim J, Min J (2019) “Supplier, Tailor, and Facilitator: Typology of Platform Business Models” J Open Innov Technol Mark Complex (vol. 5, no. 3, pp. 57) https://doi.org/10.3390/joitmc5030057
  19. [19] Business Models for Sustainable Innovation in Industry 4.0: Smart Manufacturing Processes, Digitalization of Production Systems, and Data-driven Decision Making (2019) J Self-Gov Manag Econ (vol. 7, no. 3, pp. 21) https://doi.org/10.22381/JSME7320193
  20. [20] Weking J, Stöcker M, Kowalkiewicz M, Böhm M, Krcmar H (2018) “Archetypes for Industry 4.0 Business Model Innovations” Proceedings of the 24th Americas Conference on Information Systems (AMCIS) New Orleans, Louisiana, Association for Information Systems (AIS) - pp. 1–10
  21. [21] Müller JM (2019) “Antecedents to Digital Platform Usage in Industry 4.0 by Established Manufacturers” Sustainability (vol. 11, no. 4, pp. 1121) https://doi.org/10.3390/su11041121
  22. [22] Kohtamäki M, Parida V, Oghazi P, Gebauer H, Baines T (2019) “Digital servitization business models in ecosystems: A theory of the firm” J Bus Res (vol. 104, pp. 380–392) https://doi.org/10.1016/j.jbusres.2019.06.027
  23. [23] Kraus S, Palmer C, Kailer N, Kallinger FL, Spitzer J (2018) “Digital entrepreneurship: A research agenda on new business models for the twenty-first century” Int J Entrep Behav Res (vol. 25, no. 2, pp. 353–375) https://doi.org/10.1108/IJEBR-06-2018-0425
  24. [24] Ruggieri R, Savastano M, Scalingi A, Bala D, D’Ascenzo F (2018) “The impact of Digital Platforms on Business Models: an empirical investigation on innovative start-ups” Manag Mark Chall Knowl Soc (vol. 13, no. 4, pp. 1210–1225) https://doi.org/10.2478/mmcks-2018-0032
  25. [25] Stallkamp M, Schotter APJ (2021) “Platforms without borders? The international strategies of digital platform firms” Glob Strategy J (vol. 11, no. 1, pp. 58–80) https://doi.org/10.1002/gsj.1336
  26. [26] Stoian CA, Tohanean D (2021) “Platform Business Models – A Case Study of the Technology Industry” J Econ Manag Sci (vol. 4, no. 1, pp. 18) https://doi.org/10.30560/jems.v4n1p18
  27. [27] Bigliardi B, Filippelli S (2021) “Investigating Circular Business Model Innovation through Keywords Analysis” Sustainability (vol. 13, no. 9, pp. 5036) https://doi.org/10.3390/su13095036
  28. [28] Zhao Y, von Delft S, Morgan-Thomas A, Buck T (2020) “The evolution of platform business models: Exploring competitive battles in the world of platforms” Long Range Plann (vol. 53, no. 4, pp. 101892) https://doi.org/10.1016/j.lrp.2019.101892
  29. [29] Xiao Y, Watson M (2019) “Guidance on Conducting a Systematic Literature Review” J Plan Educ Res (vol. 39, no. 1, pp. 93–112) https://doi.org/10.1177/0739456X17723971
  30. [30] Guggenberger T, Möller F, Boualouch K, Otto B (2020) “Towards a Unifying Understanding of Digital Business Models” PACIS 2020 Proc (https://aisel.aisnet.org/pacis2020/70)
  31. [31] Isabelle D, Westerlund M, Mane M, Leminen S (2020) “The Role of Analytics in Data-Driven Business Models of Multi-Sided Platforms: An exploration in the food industry” Technol Innov Manag Rev (vol. 10, no. 7, pp. 4–15) https://doi.org/10.22215/timreview/1371
  32. [32] Tashiro S, Choi S (2021) “Labor market outcomes under digital platform business models in the sharing economy: the case of the taxi services industry” Bus Econ (vol. 56, no. 4, pp. 240–251) https://doi.org/10.1057/s11369-021-00237-0
  33. [33] Fürstenau D, Klein S, Vogel A, Auschra C (2021) “Multi-sided platform and data-driven care research” Electron Mark (vol. 31, no. 4, pp. 811–828) https://doi.org/10.1007/s12525-021-00461-8
  34. [34] Hänninen M, Smedlund A, Mitronen L (2017) “Digitalization in retailing: multi-sided platforms as drivers of industry transformation” Balt J Manag (vol. 13, no. 2, pp. 152–168) https://doi.org/10.1108/BJM-04-2017-0109
  35. [35] Stölzle W, Häberle L (2021) “Digital Logistics Platforms—Initial Approaches to Market Segmentation in Light of Traditional and New Providers” In: Voigt K-I, M. Müller J - editors. Digital Business Models in Industrial Ecosystems: Lessons Learned from Industry 4.0 Across Europe Cham, Springer International Publishing - pp. 105–123. https://doi.org/10.1007/978-3-030-82003-9_7
  36. [36] von Delft S, Zhao Y (2021) “Business models in process industries: Emerging trends and future research” Technovation (vol. 105, pp. 102195) https://doi.org/10.1016/j.technovation.2020.102195
  37. [37] Mishra S, Tripathi AR (2021) “AI business model: an integrative business approach” J Innov Entrep (vol. 10, no. 1, pp. 18) https://doi.org/10.1186/s13731-021-00157-5
  38. [38] Oncioiu I, Bîlcan FR, Stoica DA, Stanciu A (2019) “Digital Transformation of Managerial Accounting - Trends in the New Economic Environment” EIRP Proceedings Galați, Romania, Universitatea Danubius din Galati, vol. 14 - (https://proceedings.univ-danubius.ro/index.php/eirp/article/view/1919)
  39. [39] Enes G (2019) “Digital Platforms and European Union Law – Challenges from a Perspective of Multilevel Constitutionalism” (https://papers.ssrn.com/abstract=3427796)
  40. [40] Ibarra D, Ganzarain J, Igartua JI (2018) “Business model innovation through Industry 4.0: A review” Procedia Manuf (vol. 22, pp. 4–10) https://doi.org/10.1016/j.promfg.2018.03.002
  41. [41] Grabowska S, Gajdzik B, Saniuk S (2020) “The Role and Impact of Industry 4.0 on Business Models” In: Grzybowska K, Awasthi A, Sawhney R - editors. Sustainable Logistics and Production in Industry 4.0: New Opportunities and Challenges Cham, Springer International Publishing - pp. 31–49. https://doi.org/10.1007/978-3-030-33369-0_3
  42. [42] Müller JM, Buliga O, Voigt K-I (2021) “The role of absorptive capacity and innovation strategy in the design of industry 4.0 business Models - A comparison between SMEs and large enterprises” Eur Manag J (vol. 39, no. 3, pp. 333–343) https://doi.org/10.1016/j.emj.2020.01.002
  43. [43] Sherwani F, Asad MM, Ibrahim BSKK (2020) “Collaborative Robots and Industrial Revolution 4.0 (IR 4.0)” 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) Karachi, Pakistan, IEEE - pp. 1–5. https://doi.org/10.1109/ICETST49965.2020.9080724
  44. [44] Weking J, Stöcker M, Kowalkiewicz M, Böhm M, Krcmar H (2020) “Leveraging industry 4.0 – A business model pattern framework” Int J Prod Econ (vol. 225, pp. 107588) https://doi.org/10.1016/j.ijpe.2019.107588
  45. [45] Strazzullo S, Cricelli L, Grimaldi M, Ferruzzi G (2022) “Connecting the Path Between Open Innovation and Industry 4.0: A Review of the Literature” IEEE Trans Eng Manag (pp. 1–13) https://doi.org/10.1109/TEM.2021.3139457
  46. [46] Santos C, Mehrsai A, Barros AC, Araújo M, Ares E (2017) “Towards Industry 4.0: an overview of European strategic roadmaps” Procedia Manuf (vol. 13, pp. 972–979) https://doi.org/10.1016/j.promfg.2017.09.093
  47. [47] Chowdhury S, Haftor D, Pashkevich N (2018) “Smart Product-Service Systems (Smart PSS) in Industrial Firms: A Literature Review” Procedia CIRP (vol. 73, pp. 26–31) https://doi.org/10.1016/j.procir.2018.03.333
  48. [48] Leminen S, Rajahonka M, Wendelin R, Westerlund M (2020) “Industrial internet of things business models in the machine-to-machine context” Ind Mark Manag (vol. 84, pp. 298–311) https://doi.org/10.1016/j.indmarman.2019.08.008
  49. [49] Klingenberg CO, Borges MAV, Antunes Jr JAV (2019) “Industry 4.0 as a data-driven paradigm: a systematic literature review on technologies” J Manuf Technol Manag (vol. 32, no. 3, pp. 570–592) https://doi.org/10.1108/JMTM-09-2018-0325
  50. [50] Bigliardi B, Bottani E, Casella G (2020) “Enabling technologies, application areas and impact of industry 4.0: a bibliographic analysis” Procedia Manuf (vol. 42, pp. 322–326) https://doi.org/10.1016/j.promfg.2020.02.086
  51. [51] Chen G, Wang P, Feng B, Li Y, Liu D (2020) “The framework design of smart factory in discrete manufacturing industry based on cyber-physical system” Int J Comput Integr Manuf (vol. 33, no. 1, pp. 79–101) https://doi.org/10.1080/0951192X.2019.1699254
  52. [52] Leminen S, Rajahonka M, Westerlund M, Wendelin R (2018) “The future of the Internet of Things: toward heterarchical ecosystems and service business models” J Bus Ind Mark (vol. 33, no. 6, pp. 749–767) https://doi.org/10.1108/JBIM-10-2015-0206
  53. [53] Cloud Computing for Education: A Systematic Mapping Study (n.d.) (https://ieeexplore.ieee.org/document/8283623)
  54. [54] Johnson K, Pasquale F, Chapman J (2019) “Artificial Intelligence, Machine Learning, and Bias in Finance: Toward Responsible Innovation” Fordham Law Rev (vol. 88, no. 2, pp. 499)
  55. [55] Verhoef PC, Broekhuizen T, Bart Y, Bhattacharya A, Qi Dong J, et al. (2021) “Digital transformation: A multidisciplinary reflection and research agenda” J Bus Res (vol. 122, pp. 889–901) https://doi.org/10.1016/j.jbusres.2019.09.022
  56. [56] Bican PM, Brem A (2020) “Digital Business Model, Digital Transformation, Digital Entrepreneurship: Is There A Sustainable ‘Digital’?” Sustainability (vol. 12, no. 13, pp. 5239) https://doi.org/10.3390/su12135239
  57. [57] Drechsler K, Gregory R, Wagner H-T, Tumbas S (2020) “At the Crossroads between Digital Innovation and Digital Transformation” Commun Assoc Inf Syst (vol. 47, no. 1, pp. 873–917) https://doi.org/10.17705/1CAIS.04723
  58. [58] Sjödin D, Parida V, Jovanovic M, Visnjic I (2020) “Value Creation and Value Capture Alignment in Business Model Innovation: A Process View on Outcome-Based Business Models” J Prod Innov Manag (vol. 37, no. 2, pp. 158–183) https://doi.org/10.1111/jpim.12516
  59. [59] Allweins MM, Proesch M, Ladd T (2020) “The Platform Canvas—Conceptualization of a Design Framework for Multi-Sided Platform Businesses:” Entrep Educ Pedagogy https://doi.org/10.1177/2515127420959051
  60. [60] Sorri K, Seppänen M, Still K, Valkokari K (2019) “Business Model Innovation with Platform Canvas” J Bus Models (vol. 7, no. 2, pp. 1–13) https://doi.org/10.5278/ojs.jbm.v7i2.1966
  61. [61] Kaur P, Dhir A, Talwar S, Ghuman K (2021) “The value proposition of food delivery apps from the perspective of theory of consumption value” Int J Contemp Hosp Manag (vol. 33, no. 4, pp. 1129–1159) https://doi.org/10.1108/IJCHM-05-2020-0477
  62. [62] Bouncken RB, Kraus S, Roig-Tierno N (2021) “Knowledge- and innovation-based business models for future growth: digitalized business models and portfolio considerations” Rev Manag Sci (vol. 15, no. 1, pp. 1–14) https://doi.org/10.1007/s11846-019-00366-z
  63. [63] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, et al. (2021) “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews” BMJ (vol. 372, pp. n71) https://doi.org/10.1136/bmj.n71
  64. [64] Görög G (2018) “The Definitions of Sharing Economy: A Systematic Literature Review” Management (pp. 175–189) https://doi.org/10.26493/1854-4231.13.175-189
  65. [65] Scavarda A, Daú G, Felipe Scavarda L, Duarte Azevedo B, Luis Korzenowski A (2020) “Social and ecological approaches in urban interfaces: A sharing economy management framework” Sci Total Environ (vol. 713, pp. 134407) https://doi.org/10.1016/j.scitotenv.2019.134407
  66. [66] Ciriello R, Richter A, Schwabe G (2018) “Digital Innovation” Bus Inf Syst Eng (vol. 60, no. 6, pp. 563–569)
  67. [67] Caruso L (2018) “Digital innovation and the fourth industrial revolution: epochal social changes?” AI Soc (vol. 33, no. 3, pp. 379–392) https://doi.org/10.1007/s00146-017-0736-1
  68. [68] Asadullah A, Faik I, Kankanhalli A (2018) “Digital Platforms: A Review and Future Directions” Proceedings of the 22nd Pacific Asia Conference on Information Systems (PACIS 2018) Yokohama, Japan - pp. 248. (https://aisel.aisnet.org/pacis2018/248)
  69. [69] Hein A, Schreieck M, Riasanow T, Setzke DS, Wiesche M, et al. (2020) “Digital platform ecosystems” Electron Mark (vol. 30, no. 1, pp. 87–98) https://doi.org/10.1007/s12525-019-00377-4
  70. [70] Hoofnagle CJ, van der Sloot B, Borgesius FZ (2019) “The European Union general data protection regulation: what it is and what it means” Inf Commun Technol Law (vol. 28, no. 1, pp. 65–98) https://doi.org/10.1080/13600834.2019.1573501

The author(s) has received no specific funding for this article/publication.

 Journal Article   Open Access   Published  Crossmark
Developing nations as a foremost allotment for achieving 2030 SDGs – A case study Danish MSS, Senjyu T, Urasaki N, Rahmany NA, Ershad AM, Sabory NR, Zarabie AK, Anwarzai MA, Karimy H, and Zaheb H.
Journal of Engineering and Technology Revolution (ISSN 2435-7278), 2021, 2 (1): 1-10  DOI 10.37357/1068/jetr.2.1.01

Abstract
PDF
Citation
Authors
References
Acknowledgment

Afghanistan endows enormous renewable and nonrenewable resources as a primary impetus for development of energy and agriculture. The percentage of the population whose access to the essential daily necessities for having a healthy life is among the lowest in the world. This dilemma chiefly refers to the rural and remote communities in Afghanistan. In terms of rural societies, sustainable development is a decision-making strategy that balances social, economic, technical, institutional, and environmental aspects that assures the present needs of humankind, considering the future anticipation simultaneously. The concept developed in this study targets achieving the 2030 sustainable development goals (SDGs), which are appropriate for rural and remote residents’ lifestyle change and improvement in Afghanistan. Setting measurable sustainability indicators is indispensable for the productive invention of a sustained plane for a sustainable rural community. This study proposes a sustainable mechanism for Afghanistan's rural development by confirming the 2030 sustainable development 17 Goals (SDGs). Among these SDGs, the designed framework (methodology) meets 11 goals directly and the rest of 6 goals indirectly. Besides, the proposed framework propounds a novel solution and involves all crucial segments of routine healthy life in rural Afghanistan. It consecrated criteria that fit the real-life anticipations and can lead the rural communities toward self-sufficiency for long-run sustainability. Based on the academic research and experts' judgment methods, overall analysis procedures can fit as an analogy, especially for other communities and developing countries as a pilot project.

 

Mir Sayed Shah Danish 
Strategic Research Project Center, University of the Ryukyus, Okinawa 903-0213, Japan
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Tomonobu Senjyu 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan

Naomitsu Urasaki 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan

Nisar Ahmad Rahmany 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Ahmad Murtaza Ershad 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Najib Rahman Sabory 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Ahmad Khaled Zarabie 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Mohammad Abed Anwarzai 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Hedayatullah Karimy 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Hameedullah Zaheb 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

  1. [1] The science and technology research partnership for sustainable development (SATREPS) project outcomes for the 2030 sustainable development goals (SDGs) (2018) Tokyo, Japan, Japan Science and Technology Agency (JST). (https://www.jst.go.jp/global/english/public/shiryo/re_satreps_eng.pdf) Accessed: 17 July 2019
  2. [2] Danish MSS, Sabory NR, Danish SMS, Ludin GA, Yona A, et al. (2016) “An Open-door Immature Policy for Rural Electrification: A Case Study of Afghanistan” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 8–13) https://doi.org/10.11648/j.ijrse.s.2017060301.12
  3. [3] Danish MSS, Yona A, Senjyu T (2014) “Pre-design and life cycle cost analysis of a hybrid power system for rural and remote communities in Afghanistan” The Journal of Engineering-IET (vol. 2014, no. 8, pp. 438–444) https://doi.org/10.1049/joe.2014.0172
  4. [4] Sediqi A (2010) “A preliminary assessment of air quality in Kabul” Kabul, Afghanistan, Ministry of Mines. (https://www.afghan-web.com/docs/kabul_air_quality.pdf)
  5. [5] Danish MSS, Zaheb H, Sabory NR, Karimy H, Faiq AB, et al. (2019) “The Road Ahead for Municipal Solid Waste Management in the 21st Century: A Novel-standardized Simulated Paradigm” IOP Conference Series: Earth and Environmental Science IOP Publishing, vol. 291 - pp. 1–5. https://doi.org/10.1088/1755-1315/291/1/012009
  6. [6] The Paris Agreement (2018) United Nations: Climate Change (https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement) Accessed: 17 July 2019
  7. [7] United Nations Treaty Collection: Environment (2015) Paris, France. (https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-7-d&chapter=27&clang=_en) Accessed: 17 July 2019
  8. [8] -WS-Afghanistan-sign (2015) (https://treaties.un.org/doc/Treaties/2016/02/2016021506-03PM/Actions/1461693282115-WS-Afghanistan-sign.jpg) Accessed: 22 July 2021
  9. [9] Danish MSS, Sabory NR, Ershad AM, Danish SMS, Ohta R, et al. (2017) “The Least Developed Countries Need for Changing the Passive Trend of Renewable Energy Exploitation to a Proactive Trend” International Journal of Energy and Power Engineering (vol. 5, no. 6, pp. 215–221) https://doi.org/10.11648/j.ijepe.20160506.17
  10. [10] Waas T, Hugé J, Block T, Wright T, Benitez-Capistros F, et al. (2014) “Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development” Sustainability (vol. 6, no. 9, pp. 5512–5534) https://doi.org/10.3390/su6095512
  11. [11] Brenna M, Falvo MC, Foiadelli F, Martirano L, Poli D (2012) “Sustainable Energy Microsystem (SEM): preliminary energy analysis” 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) Washington, DC, USA, IEEE - pp. 1–6. https://doi.org/10.1109/ISGT.2012.6175735
  12. [12] Liu M (Max), Mi B (2017) “Life cycle cost analysis of energy-efficient buildings subjected to earthquakes” Energy and Buildings (vol. 154, pp. 581–589) https://doi.org/10.1016/j.enbuild.2017.08.056
  13. [13] Corral L, Reardon T (2001) “Rural Nonfarm Incomes in Nicaragua” World Development (vol. 29, no. 3, pp. 427–442) https://doi.org/10.1016/S0305-750X(00)00109-1
  14. [14] Coeymans J, Mundlak Y (1993) “Sectoral growth in Chile: 1962-82” Research reports International Food Policy Research Institute (IFPRI). (https://econpapers.repec.org/paper/fprresrep/95.htm) Accessed: 23 July 2021
  15. [15] Poornachandra Rao GVS, Bhalla MS (1981) “Palaeomagnetism of Dhar traps and drift of the subcontinent during the Deccan volcanism” Geophysical Journal International (vol. 65, no. 1, pp. 155–164) https://doi.org/10.1111/j.1365-246X.1981.tb02705.x
  16. [16] Danish MSS, Senjyu T, Sabory NR, Danish SMS, Ludin GA, et al. (2017) “Afghanistan’s aspirations for energy independence: Water resources and hydropower energy” Renewable Energy (vol. 113, pp. 1276–1287) https://doi.org/10.1016/j.renene.2017.06.090
  17. [17] Danish MSS, Sabory NR, Ershad AM, Danish SMS, Yona A, et al. (2016) “Sustainable Architecture and Urban Planning trough Exploitation of Renewable Energy” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 1) https://doi.org/10.11648/j.ijrse.s.2017060301.11
  18. [18] Frame D, Tembo K, Dolan MJ, Strachan SM, Ault GW (2011) “A community based approach for sustainable off-grid PV systems in developing countries” 2011 IEEE Power and Energy Society General Meeting Detroit, MI, USA, IEEE - pp. 1–7. https://doi.org/10.1109/PES.2011.6039593
  19. [19] Cucchiella F, D’Adamo I, Gastaldi M, Koh SL, Rosa P (2017) “A comparison of environmental and energetic performance of European countries: A sustainability index” Renewable and Sustainable Energy Reviews (vol. 78, pp. 401–413) https://doi.org/10.1016/j.rser.2017.04.077
  20. [20] Nilep C (2009) “Sibling interaction and symbolic capital: Toward a theory of political micro-economy” Journal of Pragmatics (vol. 41, no. 9, pp. 1683–1692) https://doi.org/10.1016/j.pragma.2009.02.005
  21. [21] Cleaner production as an antecedent for circular economy paradigm shift at the micro-level: Evidence from a home appliance manufacturer (2018) Journal of Cleaner Production (vol. 185, pp. 740–748) https://doi.org/10.1016/j.jclepro.2018.03.006
  22. [22] Burns RK (2011) “Afghanistan: Solar assets, electricity production, and rural energy factors” Renewable and Sustainable Energy Reviews (vol. 15, no. 4, pp. 2144–2148) https://doi.org/10.1016/j.rser.2010.12.002
  23. [23] Rosen MA (2009) “Energy Sustainability: A Pragmatic Approach and Illustrations” Sustainability (vol. 1, no. 1, pp. 55–80) https://doi.org/10.3390/su1010055
  24. [24] Danish MSS, Senjyu T, Zaheb H, Sabory NR, Ibrahimi AM, et al. (2019) “A novel transdisciplinary paradigm for municipal solid waste to energy” Journal of Cleaner Production (vol. 233, pp. 880–892)
  25. [25] Ilek A, Rozenshtrom I (2018) “The term premium in a small open economy: A micro-founded approach” International Review of Economics & Finance (vol. 57, pp. 333–352) https://doi.org/10.1016/j.iref.2018.02.002
  26. [26] Dobbelaere S, Kozo K, Mairesse J (2012) “Product and Labor Market Imperfections and Scale Economies: Micro-evidence on France, Japan and the Netherlands” CREST (ParisTech-ENSAE), UNU-MERIT (Maastricht University) and National Bureau of Economic Research (NBER) (pp. 26)
  27. [27] Figueiredo PN (2017) “Micro-level technological capability accumulation in developing economies: Insights from the Brazilian sugarcane ethanol industry” Journal of Cleaner Production (vol. 167, pp. 416–431) https://doi.org/10.1016/j.jclepro.2017.08.201
  28. [28] Gardner BL (2005) “Causes of rural economic development” Agricultural Economics (vol. 32, no. s1, pp. 21–41) https://doi.org/10.1111/j.0169-5150.2004.00012.x
  29. [29] Luederitz C, Abson DJ, Audet R, Lang DJ (2017) “Many pathways toward sustainability: Not conflict but co-learning between transition narratives” Sustainability Science (vol. 12, no. 3, pp. 393–407) https://doi.org/10.1007/s11625-016-0414-0
  30. [30] Kostyk T, Andrews CJ, Herkert J, Miller C (2011) “Energy and society: challenges ahead” 2011 IEEE International Symposium on Technology and Society (ISTAS) pp. 1–1. https://doi.org/10.1109/ISTAS.2011.7160603

The author(s) has received no specific funding for this article/publication.

 Journal Article (Special Issue)   Open Access   Published  Crossmark
Performance evaluation of different photovoltaic (PV) modules: A case study Mohammadi K, Sabory NR, Karimi K, Ahmadi M, Danish MSS, and Senjyu T.
Journal of Engineering and Technology Revolution, 2020, 1 (1): 1-8  DOI 10.37357/1068/jetr.1.1.01

Abstract
PDF
Citation
Authors
References
Acknowledgment

Climate change and global warming are the main challenges for today and the future nations from the health and environment perspectives. Energy generation utilizing fossil fuel is the leading cause of these issues. On its opposite side, elimination or suppression of fossil fuel utilization by introducing clean and abundant renewable energy resources could be the best solution. In general, renewable energies have low efficiency and high capital cost compared to conventional fossil fuel-based energy supply. Therefore, without considering proper approaches and techniques, it is not encouraging to supply energy through renewable energy resources. Conquering the problem, we need to find the best method and ways to create cheap and efficient energy by renewable sources as possible. In this paper, a methodology is investigated and proposed to simultaneously save energy and cost considering useful parameters such as the effect of different modules, temperature, location, and tilt angle. An estimation-based tool developed by National Renewable Energy Laboratory (NREL) known as PV Watts, which is utilized in this paper. A 10 kW photovoltaic system with three different modules in two different locations Kabul and Kandahar in Afghanistan is selected as a case study. From the results, it is found that selection of a specific module for a specific region with different temperatures and appropriate title angles has a significant effect on the performance of photovoltaic systems. It is worthy of mention that before implementing a photovoltaic system, different aspects of the system should be evaluated using proper software/tools in order to achieve optimal energy performance. Finally, better energy system performance contributes to the attraction of investment in renewable energy resources as a clean and sustainable energy supply option.

 

Khalil Mohammadi 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan

Najib Rahman Sabory 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan

Kambiz Karimi 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan

Mikaeel Ahmadi 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa, Japan

Mir Sayed Shah Danish 
Strategic Research Projects Center, University of the Ryukyus, Okinawa, Japan

Tomonobu Senjyu 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa, Japan

  1. [1] Danish MSS, Yona A, Senjyu T (2014) “Pre-design and life cycle cost analysis of a hybrid power system for rural and remote communities in Afghanistan” The Journal of Engineering-IET (vol. 2014, no. 8, pp. 438–444) https://doi.org/10.1049/joe.2014.0172
  2. [2] Danish MSS, Sabory NR, Danish SMS, Ludin GA, Yona A, et al. (2016) “An Open-door Immature Policy for Rural Electrification: A Case Study of Afghanistan” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 8–13) https://doi.org/10.11648/j.ijrse.s.2017060301.12
  3. [3] Yaqobi MA, Matayoshi H, Danish MSS, Urakaki N, Howlader AM, et al. (2018) “Control and Energy Management Strategy of Standalone DC Microgrid Cluster using PV and Battery Storage for Rural Application” International Journal of Power and Energy Research (vol. 2, no. 4, pp. 53–68) https://doi.org/10.22606/ijper.2018.24001
  4. [4] Susowake Y, Ibrahimi AM, Danish MSS, Senjyu T, Howlader AM, et al. (2018) “Multi-Objective Design of Power System Introducing Seawater Electrolysis Plant for Remote Island” IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia) Singapore, Singapore, IEEE - pp. 908–911. https://doi.org/10.1109/ISGT-Asia.2018.8467912
  5. [5] Tobaru S, Muarapaz CC, Conteh F, Senjyu T, Howlader AM, et al. (2016) “Design of hybrid renewable energy systems considering optimal real-time pricing” 2016 IEEE Region 10 Conference (TENCON) Singapore, Singapore, IEEE - pp. 3206–3209. https://doi.org/10.1109/TENCON.2016.7848641
  6. [6] Ahmadi M, Lotfy ME, Howlader AM, Yona A, Senjyu T (2019) “Centralised multi-objective integration of wind farm and battery energy storage system in real-distribution network considering environmental, technical and economic perspective” Transmission Distribution IET Generation (vol. 13, no. 22, pp. 5207–5217) https://doi.org/10.1049/iet-gtd.2018.6749
  7. [7] Danish MSS, Matayoshi H, Howlader HOR, Chakraborty S, Mandal P, et al. (2019) “Microgrid Planning and Design: Resilience to Sustainability” 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia) Bangkok, Thailand, IEEE - pp. 253–258. https://doi.org/10.1109/GTDAsia.2019.8716010
  8. [8] Danish MSS, Sabory NR, Ershad AM, Danish SMS, Yona A, et al. (2017) “Sustainable Architecture and Urban Planning trough Exploitation of Renewable Energy” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 1–7) https://doi.org/10.11648/j.ijrse.s.2017060301.11
  9. [9] Ahmadi M, Lotfy ME, Danish MSS, Ryuto S, Yona A, et al. (2019) “Optimal multi-configuration and allocation of SVR, capacitor, centralised wind farm, and energy storage system: a multi-objective approach in a real distribution network” IET Renewable Power Generation (vol. 13, no. 5, pp. 762–773) https://doi.org/10.1049/iet-rpg.2018.5057
  10. [10] Ahmadi M, Lotfy ME, Shigenobu R, Yona A, Senjyu T (2018) “Optimal sizing and placement of rooftop solar photovoltaic at Kabul city real distribution network” Transmission Distribution IET Generation (vol. 12, no. 2, pp. 303–309) https://doi.org/10.1049/iet-gtd.2017.0687
  11. [11] Chikate BV, Sadawarte Y (2015) “The factors affecting the performance of solar cell” International journal of computer applications (vol. 1, no. 1, pp. 0975–8887)
  12. [12] Jain D, Lalwani M (2017) “A Review on Optimal Inclination Angles for Solar Arrays” International Journal of Renewable Energy Research (IJRER) (vol. 7, no. 3, pp. 1053–1061)
  13. [13] Deb SK (2000) “Chapter 584 - Recent Developments in High-Efficiency PV Cells” In: Sayigh AAM - editor. World Renewable Energy Congress VI Oxford, Pergamon - pp. 2658–2663. https://doi.org/10.1016/B978-008043865-8/50584-5
  14. [14] Nair KK, Jose J, Ravindran A (2016) “Analysis of temperature dependent parameters on solar cell efficiency using MATLAB” (vol. 4, no. 3, pp. 6)
  15. [15] Jäger K-D, Isabella O, Smets AHM, Swaaij RACMM van, Zeman M (2016) “Solar energy: fundamentals, technology and systems” p. ISBN: 978-1-906860-73-8
  16. [16] Masters GM (2004) “Renewable and Efficient Electric Power Systems,” 2nd ed. USA, Wiley. 647 p. ISBN: 0-471-28060-7 (http://www.a-ghadimi.com/files/Courses/RenewableEnergy/REN_Book.pdf)
  17. [17] PVWATTS free solar calculator (2019) Photovoltaic Software (https://photovoltaic-software.com/pv-softwares-calculators/online-free-photovoltaic-software/pvwatts-nrel) Accessed: 9 April 2020
  18. [18] Dash PK, Gupta NC (2015) “Effect of temperature on power output from different commercially available photovoltaic modules” International Journal of Engineering Research and Applications (vol. 5, no. 1, pp. 148–151)
  19. [19] Singh P, Ravindra NM (2012) “Temperature dependence of solar cell performance: An analysis” Solar Energy Materials and Solar Cells (vol. 101, pp. 36–45) https://doi.org/10.1016/j.solmat.2012.02.019

The author(s) has received no specific funding for this article/publication.

 Journal Article (Special Issue)   Open Access   Published  Crossmark
Active substation design for distributed generation integration in Afghanistan’s grid Joya AJ, and Shirani H.
Journal of Engineering and Technology Revolution, 2020, 1 (1): 9-15  DOI 10.37357/1068/jetr/1.1.02

Abstract
PDF
Citation
Authors
References
Acknowledgment

Energy has been harvested from water, wind and solar as isolated distributed generation (DG) to electrify rural households and villages in Afghanistan. Several solar PV and wind farms have been or planned to be built as isolated distributed generators in those provinces that have no access to national grid. While it is ideal that the national electrical grid be extended to those provinces and regions, these distributed generators are not compatible with the operating voltage specifications of the national grid. In this study, we have focused on changing the topology of distribution grid at the planning and design stage by introducing active devices to control voltage, especially in the weak nodes of the grid. At substations which convert DG to MV/LV, using two active devices such as On Load Tap Changing-Phase Shifting Transformer (OLTC-PST) and Static Synchronize Compensator (STATCOM) should be considered in the design. The integration a 1-MW wind power distributed generator in Panjshir province of Afghanistan with the national grid network is considered. Introducing these active devices that increases the installed DG power in weak networks is analyzed. An operation and control strategy for the Active Substation is verified by temporal power flow simulations. The results show that using these active devices can increase the active power injection capability in weak networks.

 

Ali Jan Joya 
Ministry of Energy and Water, Kabul, Afghanistan

Habiburahman Shirani 
Department of Electrical and Electronics Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan

  1. [1] Danish MSS, Senjyu T, Sabory NR, Danish SMS, Ludin GA, et al. (2017) “Afghanistan’s aspirations for energy independence: Water resources and hydropower energy” Renewable Energy (vol. 113, pp. 1276–1287) https://doi.org/10.1016/j.renene.2017.06.090
  2. [2] Ahmadzai S, McKinna A (2018) “Afghanistan electrical energy and trans-boundary water systems analyses: Challenges and opportunities” Energy Reports (vol. 4, pp. 435–469) https://doi.org/10.1016/j.egyr.2018.06.003
  3. [3] Ministry of Energy and Water (MEW) - Afghanistan (2019) “MEW Statistics” (http://mew.gov.af/) Accessed: 4 July 2020
  4. [4] Hallett M (2009) “Distributed power in Afghanistan: The Padisaw micro-hydro project” Renewable Energy (vol. 34, no. 12, pp. 2847–2851) https://doi.org/10.1016/j.renene.2009.06.001
  5. [5] Martins VF, Borges CLT (2011) “Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties” IEEE Transactions on Power Systems (vol. 26, no. 4, pp. 2164–2172) https://doi.org/10.1109/TPWRS.2011.2122347
  6. [6] Verboomen J, Van Hertem D, Schavemaker PH, Kling WL, Belmans R (2005) “Phase shifting transformers: principles and applications” 2005 International Conference on Future Power Systems Amsterdam, Netherlands, IEEE - pp. 1–6. https://doi.org/10.1109/FPS.2005.204302
  7. [7] Siddiqui AS, Khan S, Ahsan S, Khan MI, Annamalai (2012) “Application of phase shifting transformer in Indian Network” 2012 International Conference on Green Technologies (ICGT) Trivandrum, India, IEEE - pp. 186–191. https://doi.org/10.1109/ICGT.2012.6477970
  8. [8] El-Moursi MS, Sharaf AM (2005) “Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation” IEEE Transactions on Power Systems (vol. 20, no. 4, pp. 1985–1997) https://doi.org/10.1109/TPWRS.2005.856996
  9. [9] Goikoetxea A, Barrena JA, Rodriguez MA, Abad G (2009) “Active substation design to maximize DG integration” 2009 IEEE Bucharest PowerTech Bucharest, Romania, IEEE - pp. 1–6. https://doi.org/10.1109/PTC.2009.5282156
  10. [10] Rao P, Crow ML, Yang Z (2000) “STATCOM control for power system voltage control applications” IEEE Transactions on Power Delivery (vol. 15, no. 4, pp. 1311–1317) https://doi.org/10.1109/61.891520
  11. [11] Shahzad U, Asgarpoor S (2017) “A Comprehensive Review of Protection Schemes for Distributed Generation” Energy and Power Engineering (vol. 9, no. 8, pp. 430–463) https://doi.org/10.4236/epe.2017.98029
  12. [12] Chetty A, Shoaib M, Sreedevi A (2014) “An Overview of Distributed Generation” International Journal of Modern Engineeirng Research (vol. 4, no. 6, pp. 35–41)
  13. [13] Padiyar KR (2007) “FACTS Controllers in Power Transmission and Distribution,” 1st ed. New Delhi, India, New Age International (P) Ltd. p. ISBN: 978-81-224-2541-3
  14. [14] Zayandehroodi H, Mohamed A, Shareef H, Mohammadjafari M (2011) “Distributed Generator and Their Effects on Distribution System Protection Performance” Australian Journal of Basic and Applied Sciences (vol. 5, no. 10, pp. 398–405)

The author(s) has received no specific funding for this article/publication.