Journal Article   Open Access   Published 

 Journal of Sustainability Outreach (ISSN 2435-7243)  Crossmark

A review on energy efficiency for pathetic environmental trends mitigation  2021, 2 (1): 1-8  DOI 10.37357/1068/jso.2.1.01


Mir Sayed Shah Danish 
Strategic Research Project Center, University of the Ryukyus, Okinawa 9030213, Japan

Tomonobu Senjyu 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 9030213, Japan

Mikaeel Ahmadi 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 9030213, Japan

Gul Ahmad Ludin 
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 9030213, Japan

Mohammad Hamid Ahadi 
Department of Intellectual Cooperation, Research and Education Promotion Association (REPA), Okinawa 900-0015, Japan

Hedayatullah Karimy 
Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

Mahdi Khosravy 
Media Integrated Communication Laboratory, Graduate School of Engineering, Osaka University, Osaka 565-0871 Japan


Environmental sustainability and climate changes mitigation are linked with energy efficiency and renewable energy deployment. Whereas, renewable energy exploitation at large scale generation needs high initial investment, which is not achievable in short to medium terms, especially in developing countries. Therefore, energy efficiency measures as a good alternative for environmental sustainability are the researchers' interest to evaluate its potential from individual energy consumers to utility-scale (generation, transmission, and distribution). Referring to literature and the connection between the second law of thermodynamics and environmental impact, environmental effects are reduced due to low energy when energy efficiency increases. Therefore, assuring demanding efficiency, interrelations studies, and impact analysis of influential factors are known exigence. This study draws a thematic perspective that involves an exhaustive investigation, explaining the relationship between exergy, environment, and energy within optimum efficiency requirements. Also, this study deals with indicators and indices in adapt to energy and environmental demand to reveal the underlying fundamental impressing forces regarding efficiency improvement.
 
  1. Danish MSS, Senjyu T, Ibrahimi AM, Ahmadi M, Howlader AM (2019) “A managed framework for energy-efficient building” Journal of Building Engineering (vol. 21, pp. 120–128) https://doi.org/10.1016/j.jobe.2018.10.013
  2. Liu G (2014) “Development of a general sustainability indicator for renewable energy systems: A review” Renewable and Sustainable Energy Reviews (vol. 31, pp. 611–621) https://doi.org/10.1016/j.rser.2013.12.038
  3. Basiago AD (1998) “Economic, social, and environmental sustainability in development theory and urban planning practice” The Environmentalist (vol. 19, no. 2, pp. 145–161) https://doi.org/10.1023/A:1006697118620
  4. Danish MSS, Senjyu T, Danish SMS, Sabory NR, K N, et al. (2019) “A Recap of Voltage Stability Indices in the Past Three Decades” Energies (vol. 12, no. 8, pp. 1544) https://doi.org/10.3390/en12081544
  5. Danish MSS, Yona A, Senjyu T (2015) “A Review of Voltage Stability Assessment Techniques with an Improved Voltage Stability Indicator” International Journal of Emerging Electric Power Systems (vol. 16, no. 2, pp. 107–115) https://doi.org/10.1515/ijeeps-2014-0167
  6. Wang J-J, Jing Y-Y, Zhang C-F, Zhao J-H (2009) “Review on multi-criteria decision analysis aid in sustainable energy decision-making” Renewable and Sustainable Energy Reviews (vol. 13, no. 9, pp. 2263–2278) https://doi.org/10.1016/j.rser.2009.06.021
  7. Danish MSS, Senjyu T, Zaheb H, Sabory NR, Ibrahimi AM, et al. (2019) “A novel transdisciplinary paradigm for municipal solid waste to energy” Journal of Cleaner Production (vol. 233, pp. 880–892)
  8. Yaqobi MA, Matayoshi H, Danish MSS, Urasaki N, Howlader AM, et al. (2018) “Control and energy management strategy of standalone DC microgrid cluster using PV and battery storage for rural application” International Journal of Power and Energy Research (vol. 2, no. 4, pp. 53–68) https://doi.org/10.22606/ijper.2018.24001
  9. Ibrahimi AM, Howlader HOR, Danish MSS, Shigenobu R, Sediqi MM, et al. (n.d.) “Optimal Unit Commitment with Concentrated Solar Power and Thermal Energy Storage in Afghanistan Electrical System” International Journal of Emerging Electric Power Systems
  10. Danish SMS, Ahmadi M, Danish MSS, Mandal P, Yona A, et al. (2020) “A coherent strategy for peak load shaving using energy storage systems” Journal of Energy Storage (vol. 32, pp. 101823) https://doi.org/10.1016/j.est.2020.101823
  11. Piacentino A, Duic N, Markovska N, Mathiesen BV, Guzović Z, et al. (2019) “Sustainable and cost-efficient energy supply and utilisation through innovative concepts and technologies at regional, urban and single-user scales” Energy (vol. 182, pp. 254–268) https://doi.org/10.1016/j.energy.2019.06.015
  12. Danish MSS, Sabory NR, Wali M, Lotfy ME, Senjyu T (2019) “A sustainable building planning, modeling, and optimization within the smart city appraisal” International Journal on: Proceedings of Science and Technology Sepang, Malaysia, IEREK - pp. (in press).
  13. Guelpa E, Bischi A, Verda V, Chertkov M, Lund H (2019) “Towards future infrastructures for sustainable multi-energy systems: A review” Energy (vol. 184, pp. 2–21) https://doi.org/10.1016/j.energy.2019.05.057
  14. Hafizyar M, Arsallan AR, Sabory NR, Danish MSS, Senjyu T (2021) “Smart and sustainable township: An overview” In: Danish MSS, Senjyu T, Sabory NR - editors. Sustainability Outreach in Developing Countries Singapore, Springer Singapore - pp. 65–80. https://doi.org/10.1007/978-981-15-7179-4_5 (http://link.springer.com/10.1007/978-981-15-7179-4_5) Accessed: 18 November 2020
  15. Urbaniec K, Mikulčić H, Rosen MA, Duić N (2017) “A holistic approach to sustainable development of energy, water and environment systems” Journal of Cleaner Production (vol. 155, pp. 1–11) https://doi.org/10.1016/j.jclepro.2017.01.119
  16. Danish MSS, Zaheb H, Sabory NR, Karimy H, Faiq AB, et al. (2019) “The Road Ahead for Municipal Solid Waste Management in the 21st Century: A Novel-standardized Simulated Paradigm” IOP Conference Series: Earth and Environmental Science IOP Publishing, vol. 291 - pp. 1–5. https://doi.org/10.1088/1755-1315/291/1/012009
  17. Heras-Saizarbitoria I, Boiral O, Allur E (2018) “Three Decades of Dissemination of ISO 9001 and Two of ISO 14001: Looking Back and Ahead” In: Heras-Saizarbitoria I - editor. ISO 9001, ISO 14001, and New Management Standards Cham, Springer International Publishing - pp. 1–15. https://doi.org/10.1007/978-3-319-65675-5_1 (https://doi.org/10.1007/978-3-319-65675-5_1) Accessed: 17 July 2021
  18. Danish MSS, Senjyu T, Sabory NR: editors (2021) “Sustainability Outreach in Developing Countries,” 1st ed. Singapore, Singapore, Springer Singapore. 202 p. ISBN: 9789811571787 (https://www.springer.com/gp/book/9789811571787) Accessed: 16 July 2020
  19. Awasthi MD, Pandey MK, Chauhan T, Danish MSS, Kumar D, et al. (2021) “Contemporary developments in waste water treatment technologies” Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development: Pennsylvania, United States, IGI Global - pp. 196–219. https://doi.org/10.4018/978-1-7998-4915-5 (http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4915-5) Accessed: 18 November 2020
  20. Shahzad MW, Burhan M, Ang L, Ng KC (2017) “Energy-water-environment nexus underpinning future desalination sustainability” Desalination (vol. 413, pp. 52–64) https://doi.org/10.1016/j.desal.2017.03.009
  21. Bilgen S, Sarıkaya İ (2015) “Exergy for environment, ecology and sustainable development” Renewable and Sustainable Energy Reviews (vol. 51, pp. 1115–1131) https://doi.org/10.1016/j.rser.2015.07.015
  22. Elsland R, Divrak C, Fleiter T, Wietschel M (2014) “Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector” Energy Policy (vol. 70, pp. 14–29) https://doi.org/10.1016/j.enpol.2014.03.010
  23. Olafsson S, Cook D, Davidsdottir B, Johannsdottir L (2014) “Measuring countries׳ environmental sustainability performance – A review and case study of Iceland” Renewable and Sustainable Energy Reviews (vol. 39, pp. 934–948) https://doi.org/10.1016/j.rser.2014.07.101
  24. Cucchiella F, D’Adamo I, Gastaldi M, Koh SL, Rosa P (2017) “A comparison of environmental and energetic performance of European countries: A sustainability index” Renewable and Sustainable Energy Reviews (vol. 78, pp. 401–413) https://doi.org/10.1016/j.rser.2017.04.077
  25. Statistics, knowledge and policy: Key indicators to inform decision making (2005) Text Paris, France, Organization for Economic Co-operation and Development (OECD). (https://www.oecd-ilibrary.org/economics/statistics-knowledge-and-policy_9789264009011-en) Accessed: 18 July 2021
  26. De Bhowmick G, Sarmah AK, Sen R (2019) “Zero-waste algal biorefinery for bioenergy and biochar: A green leap towards achieving energy and environmental sustainability” Science of The Total Environment (vol. 650, pp. 2467–2482) https://doi.org/10.1016/j.scitotenv.2018.10.002
  27. Kaygusuz K (2009) “Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey” Renewable and Sustainable Energy Reviews (vol. 13, no. 1, pp. 253–270) https://doi.org/10.1016/j.rser.2007.07.009
  28. Özokcu S, Özdemir Ö (2017) “Economic growth, energy, and environmental Kuznets curve” Renewable and Sustainable Energy Reviews (vol. 72, pp. 639–647) https://doi.org/10.1016/j.rser.2017.01.059
  29. Ferretti P, Zolin MB, Ferraro G (2020) “Relationships among sustainability dimensions: evidence from an Alpine area case study using Dominance-based Rough Set Approach” Land Use Policy (vol. 92, pp. 104457) https://doi.org/10.1016/j.landusepol.2019.104457
  30. Danish MSS, Senjyu T, Sabory NR, Danish SMS, Ludin GA, et al. (2017) “Afghanistan’s aspirations for energy independence: Water resources and hydropower energy” Renewable Energy (vol. 113, pp. 1276–1287) https://doi.org/10.1016/j.renene.2017.06.090
  31. Danish MSS, Sabory NR, Ershad AM, Danish SMS, Yona A, et al. (2016) “Sustainable Architecture and Urban Planning trough Exploitation of Renewable Energy” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 1) https://doi.org/10.11648/j.ijrse.s.2017060301.11
  32. Nance MT, Boettcher WA (2017) “Conflict, cooperation, and change in the politics of energy interdependence: An introduction” Energy Research & Social Science (vol. 24, pp. 1–5) https://doi.org/10.1016/j.erss.2016.12.020
  33. Sovacool BK (2010) “The routledge handbook of energy security,” 1st ed. New York, USA, Routledge. 455 p. ISBN: 978-1-136-85063-9
  34. Suck A (2005) “The politics for a sustainable energy industry: Renewable energy policy in the United Kingdom and in Germany,” 1st ed. Cheltenham, United Kingdom, Edward Elgar Publishing. p. ISBN: 978-1-84542-800-6 (https://www.elgaronline.com/view/9781845423872.00016.xml) Accessed: 18 July 2021
  35. Danish MSS, Sabory NR, Danish SMS, Ludin GA, Yona A, et al. (2016) “An Open-door Immature Policy for Rural Electrification: A Case Study of Afghanistan” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 8–13) https://doi.org/10.11648/j.ijrse.s.2017060301.12
The author(s) has received no specific funding for this article/publication.