Download Article
Join our upcoming conferences for groundbreaking insights and global collaboration!
Register TodayA review on solar air conditioning systems 2024, 4 (1): 1-10 DOI 10.37357/1068/jser/4.1.01
Mohammad Azim Rasuli
Department of Mechanical Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan
Shuichi Torii
Department of Mechanical System Engineering, Faculty of Engineering, Kumamoto University, Kumamoto, Japan
In order to meet the growing need for cooling in buildings, solar air conditioning systems are a creative and environmentally friendly alternative. Solar energy is the primary energy source for producing chilled air, which can be used to maintain comforting inside temperatures. The working theories and components of several solar air conditioning systems, including hybrid, adsorption, and absorption systems, are thoroughly reviewed in this research. It also discusses the performance, efficiency, and economic feasibility of these systems and their environmental impact. The review highlights the potential benefits of solar air conditioning, such as plummeting greenhouse gas emissions, reducing energy usage, and enhancing indoor air quality. However, the paper also recognizes the limitations and challenges that need to be addressed to increase the widespread adoption of solar air conditioning systems. During our analysis, we found that solar air conditioning systems require consideration in terms of design and technological aspects. Ensuring these systems perform optimally in different climates and are economically viable is crucial. While there are challenges involved such as addressing the variations in resources and the initial setup costs. However, we are witnessing progress through advancements in materials, components, and control strategies. This continuous improvement inspires and reinforces the belief that solar air conditioning can become an accessible cooling solution for applications. This review provides a valuable resource for researchers, engineers, and policymakers interested in promoting sustainable and energy-efficient cooling technologies.
- Aridhi E, Bemri H, Mami A, Aridhi E, Bemri H, et al. (2017) “Solar air-conditioning systems” Sustainable Air Conditioning Systems IntechOpen - https://doi.org/10.5772/intechopen.72189 (https://www.intechopen.com/chapters/58041) Accessed: 30 July 2023
- Suman S, Khan MohdK, Pathak M (2015) “Performance enhancement of solar collectors—A review” Renewable and Sustainable Energy Reviews (vol. 49, pp. 192–210) https://doi.org/10.1016/j.rser.2015.04.087
- Habib MF, Ali M, Sheikh NA, Badar AW, Mehmood S (2020) “Building thermal load management through integration of solar assisted absorption and desiccant air conditioning systems: A model-based simulation-optimization approach” Journal of Building Engineering (vol. 30, pp. 101279) https://doi.org/10.1016/j.jobe.2020.101279
- Pattanayak L, Padhi BN (2022) “Thermodynamic simulation and economic analysis of combined cycle with inlet air cooling and fuel pre-heating: Performance enhancement and emission reduction” Energy Conversion and Management (vol. 267, pp. 115884) https://doi.org/10.1016/j.enconman.2022.115884
- Li Y, Lu L, Yang H (2010) “Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong” Solar Energy (vol. 84, no. 12, pp. 2085–2095) https://doi.org/10.1016/j.solener.2010.09.006
- Zhai XQ, Qu M, Li Yue, Wang RZ (2011) “A review for research and new design options of solar absorption cooling systems” Renewable and Sustainable Energy Reviews (vol. 15, no. 9, pp. 4416–4423) https://doi.org/10.1016/j.rser.2011.06.016
- Zhai XQ, Wang RZ (2009) “A review for absorbtion and adsorbtion solar cooling systems in China” Renewable and Sustainable Energy Reviews (vol. 13, no. 6, pp. 1523–1531) https://doi.org/10.1016/j.rser.2008.09.022
- Ortiz JD, Jackson R (2020) “Understanding Eunice Foote’s 1856 experiments: heat absorption by atmospheric gases” Notes and Records: the Royal Society Journal of the History of Science (vol. 76, no. 1, pp. 67–84) https://doi.org/10.1098/rsnr.2020.0031
- Ortiz JD, Jackson R (1856) “Circumstances affecting the heat of the Sun’s Rays_1856” The American Journal of Science and Arts (vol. 22, no. 66, pp. 383–384)
- Ragheb M (2014) “Solar thermal power and energy storage historical perspective” (https://www.solarthermalworld.org/sites/default/files/story/2015-04-18/solar_thermal_power_and_energy_storage_historical_perspective.pdf) Accessed: 28 July 2023
- Farber EA, Flanigan FM, Lopez L, Polifka RW (1966) “Operation and performance of the University of Florida solar air-conditioning system” Solar Energy (vol. 10, no. 2, pp. 91–95) https://doi.org/10.1016/0038-092X(66)90043-0
- Access (1979) S. Office of Minority Business Enterprise. 16 p.
- Nemet G (2012) “Historical case studies of energy technology innovation” (https://previous.iiasa.ac.at/web/home/research/researchPrograms/TransitionstoNewTechnologies/10_Nemet_Solar_PV_WEB.pdf) Accessed: 28 July 2023
- Sokhansefat T, Mohammadi D, Kasaeian A, Mahmoudi AR (2017) “Simulation and parametric study of a 5-ton solar absorption cooling system in Tehran” Energy Conversion and Management (vol. 148, pp. 339–351) https://doi.org/10.1016/j.enconman.2017.05.070
- Montagnino FM (2017) “Solar cooling technologies. Design, application and performance of existing projects” Solar Energy (vol. 154, pp. 144–157) https://doi.org/10.1016/j.solener.2017.01.033
- Aguilar-Jiménez JA, Velázquez-Limón N, López-Zavala R, González-Uribe LA, Islas S, et al. (2020) “Optimum operational strategies for a solar absorption cooling system in an isolated school of Mexico” International Journal of Refrigeration (vol. 112, pp. 1–13) https://doi.org/10.1016/j.ijrefrig.2019.12.010
- Alghool DM, Elmekkawy TY, Haouari M, Elomri A (2020) “Optimization of design and operation of solar assisted district cooling systems” Energy Conversion and Management: X (vol. 6, pp. 100028) https://doi.org/10.1016/j.ecmx.2019.100028
- Ghodbane M, Said Z, Ketfi O, Boumeddane B, Hoang AT, et al. (2022) “Thermal performance assessment of an ejector air-conditioning system with parabolic trough collector using R718 as a refrigerant: A case study in Algerian desert region” Sustainable Energy Technologies and Assessments (vol. 53, pp. 102513) https://doi.org/10.1016/j.seta.2022.102513
- Kumar MA, Patel D (2021) “Performance assessment and thermodynamic analysis of a hybrid solar air conditioning system” Materials Today: Proceedings (vol. 46, pp. 5632–5638) https://doi.org/10.1016/j.matpr.2020.09.521
- Chen E, Chen J, Jia T, Zhao Y, Dai Y (2021) “A solar-assisted hybrid air-cooled adiabatic absorption and vapor compression air conditioning system” Energy Conversion and Management (vol. 250, pp. 114926) https://doi.org/10.1016/j.enconman.2021.114926
- Bi Y, Lin Y, Qin L, Wang H, Sun R (2022) “Performance optimization of a solar air-conditioning with a three-phase accumulator based on the energy-economic analysis” Journal of Building Engineering (vol. 59, pp. 105065) https://doi.org/10.1016/j.jobe.2022.105065
- Hu L, Liu Y, Wang D, Luo X, Liu H (2022) “Feasibility analysis and feature comparison of cold thermal energy storage for off-grid PV air-conditioned buildings in the tropics” Energy Conversion and Management (vol. 254, pp. 115176) https://doi.org/10.1016/j.enconman.2021.115176
- Gugulothu R, Somanchi NS, Banoth HB, Banothu K (2015) “A Review on Solar Powered Air Conditioning System” Procedia Earth and Planetary Science (vol. 11, pp. 361–367) https://doi.org/10.1016/j.proeps.2015.06.073
- Martin S (2013) “Performance evaluation of a solar cooling system in UAE – Ras Al Khaimah by both experiment and simulation” (Master of Science Thesis) Stockholm, Sweden, KTH Royal Institute of Technology (https://aurak.ac.ae/files/rakric/Phd&MasterThesis/2012/CSEM-MR12-3.KTH-MartinSsembatyaEGI-2013-016MSC.pdf.pdf) Accessed: 28 July 2023
- Comino F, Castillo González J, Navas-Martos FJ, Ruiz de Adana M (2020) “Experimental energy performance assessment of a solar desiccant cooling system in Southern Europe climates” Applied Thermal Engineering (vol. 165, pp. 114579) https://doi.org/10.1016/j.applthermaleng.2019.114579
- Sutikno JP, Aldina S, Sari N, Handogo R (2018) “Utilization of solar energy for air conditioning system” MATEC Web Conf (vol. 156, pp. 03040) https://doi.org/10.1051/matecconf/201815603040
- Mehta K, Gadhia D (2018) “Using the heat of sun to cool: A case study of 100 TR (350kWth) solar air-conditioning system” EuroSun 2018 Conference Proceedings Rapperswil, Switzerland, International Solar Energy Society - pp. 1–8. https://doi.org/10.18086/eurosun2018.04.03 (https://proceedings.ises.org/?doi=eurosun2018.04.03) Accessed: 28 July 2023
- Sandong Omgba B, Lontsi F, Ndame MK, Thierry Olivier SM, Ndoh Mbue I (2023) “Development and energy analysis of a solar-assisted air conditioning system for energy saving” Energy Conversion and Management: X (vol. 19, pp. 100390) https://doi.org/10.1016/j.ecmx.2023.100390
- Allouhi A, Kousksou T, Jamil A, Bruel P, Mourad Y, et al. (2015) “Solar driven cooling systems: An updated review” Renewable and Sustainable Energy Reviews (vol. 44, pp. 159–181) https://doi.org/10.1016/j.rser.2014.12.014
- Moaveni H (2010) “Technical and economic analysis of solar cooling systems in a hot and humid climate” Proceedings of the 17th Symposium for Improving Building Systems in Hot and Humid Climates Texas, USA, Texas A&M University Libraries - pp. 6. (https://oaktrust.library.tamu.edu/handle/1969.1/93229) Accessed: 30 July 2023
- Mittal V, Kasana KS, Thakur NS (2005) “The study of solar absorption air-conditioning systems” Journal of Energy in Southern Africa (vol. 16, no. 4, pp. 59–66) https://doi.org/10.17159/2413-3051/2005/v16i4a3103
- A reliable HVAC system gives you complete control over your home’s temperature and air quality (2023) Today’s Homeowner (https://todayshomeowner.com/hvac/) Accessed: 28 July 2023
- Welch T (2009) “Module 10: Absorption refrigeration” CIBSE Journal (https://www.cibsejournal.com/cpd/modules/2009-11/) Accessed: 28 July 2023
- Sheridan NR (1983) “Solar air conditioning” In: Lim BBP - editor. Solar Energy Applications in the Tropics Dordrecht, Springer Netherlands - pp. 57–89. https://doi.org/10.1007/978-94-009-7936-9_6
- Kim DS, Infante Ferreira CA (2008) “Solar refrigeration options – a state-of-the-art review” International Journal of Refrigeration (vol. 31, no. 1, pp. 3–15) https://doi.org/10.1016/j.ijrefrig.2007.07.011
- Balghouthi M, Chahbani MH, Guizani A (2008) “Feasibility of solar absorption air conditioning in Tunisia” Building and Environment (vol. 43, no. 9, pp. 1459–1470) https://doi.org/10.1016/j.buildenv.2007.08.003
- Djelloul A, Draoui B, Moummi N (2013) “Simulation of a solar driven air conditioning system for a house in dry and hot climate of Algeria” Courrier du Savoir (no. 15, pp. 31–39)
- Akhtar S, Khan TS, Ilyas S, Alshehhi MS (2015) “Feasibility and Basic Design of Solar Integrated Absorption Refrigeration for an Industry” Energy Procedia (vol. 75, pp. 508–513) https://doi.org/10.1016/j.egypro.2015.07.441
- Dincer I, Rosen MA (2013) “Chapter 6 - Exergy Analysis of Psychrometric Processes” In: Dincer I, Rosen MA - editors. Exergy (Second Edition) Elsevier - pp. 83–100. https://doi.org/10.1016/B978-0-08-097089-9.00006-1 (https://www.sciencedirect.com/science/article/pii/B9780080970899000061) Accessed: 31 July 2023
- Fatahian H, Salarian H, Fatahian E (2020) “An overview of recent studies on the development of desiccant air-conditioning systems” International Journal of Engineering Technology and Sciences (vol. 7, no. 1, pp. 84–96) https://doi.org/10.15282/http://dx.doi.org/10.15282/ijets.7.1.2020.1008
- Petrenko V, Huang B, Ierin V, Shestopalov K, Volovyk O (2010) “Design and modeling of innovative solar ejector air conditioners and chillers operating with low boiling working fluids” International Solar Energy Society (pp. 8) https://doi.org/10.18086/eurosun.2010.10.35
- Van Nguyen V, Varga S, Soares J, Dvorak V, Oliveira AC (2020) “Applying a variable geometry ejector in a solar ejector refrigeration system” International Journal of Refrigeration (vol. 113, pp. 187–195) https://doi.org/10.1016/j.ijrefrig.2020.01.018
- Gil B, Kasperski J (2014) “Performance Analysis of a Solar-powered Ejector Air-conditioning Cycle with Heavier Hydrocarbons as Refrigerants” Energy Procedia (vol. 57, pp. 2619–2628) https://doi.org/10.1016/j.egypro.2014.10.273
- Alam A (2017) “Solar powered air conditioner” Eximinsight (https://www.eximinsight.com/solar-powered-air-conditioner/) Accessed: 28 July 2023
- Mudgal A, Patel J, Modi B (2016) “Solar powered vapour absorption refrigeration (SPVAR) system as a rural microenterprise” 2016 Asian Conference on Sustainability, Energy & the Environment The International Academic Forum - pp. 6. (https://www.semanticscholar.org/paper/Solar-Powered-Vapour-Absorption-Refrigeration-as-a-Mudgal-Patel/14aa389c06b4cc99448f18168880824a8d28a697) Accessed: 30 July 2023
- Nkwetta DN, Sandercock J (2016) “A state-of-the-art review of solar air-conditioning systems” Renewable and Sustainable Energy Reviews (vol. 60, pp. 1351–1366) https://doi.org/10.1016/j.rser.2016.03.010
- Rasuli MA, Torii S (2021) “Feasibility of solar air conditioning system for Afghanistan’s climate” ijirss (vol. 4, no. 2, pp. 120–125) https://doi.org/10.53894/ijirss.v4i2.65
- Eicker U, Pietruschka D, Haag M, Schmitt A (2014) “Energy and Economic Performance of Solar Cooling Systems World Wide” Energy Procedia (vol. 57, pp. 2581–2589) https://doi.org/10.1016/j.egypro.2014.10.269
- Munusami A (2014) “Energy, Economic and Environmental Analysis of Compact Solar Refrigeration System” International Journal of Engineering Research & Technology (vol. 3, no. 8, ) https://doi.org/10.17577/IJERTV3IS080484 (https://www.ijert.org/research/energy-economic-and-environmental-analysis-of-compact-solar-refrigeration-system-IJERTV3IS080484.pdf, https://www.ijert.org/energy-economic-and-environmental-analysis-of-compact-solar-refrigeration-system) Accessed: 30 July 2023
- Akyüz A, Yıldırım R, Gungor A, Tuncer AD (2023) “Experimental investigation of a solar-assisted air conditioning system: Energy and life cycle climate performance analysis” Thermal Science and Engineering Progress (vol. 43, pp. 101960) https://doi.org/10.1016/j.tsep.2023.101960
- Baniyounes AM, Ghadi YY (2020) “Solar assisted cooling rule in indoor air quality” International Journal of Electrical and Computer Engineering (IJECE) (vol. 10, no. 4, pp. 3948–3956) https://doi.org/10.11591/ijece.v10i4.pp3948-3956
- Gao H, He W (2018) “Effect of a new solar air collector system on the indoor living environment and air quality for the kindergarten building” Energy Procedia (vol. 152, pp. 425–430) https://doi.org/10.1016/j.egypro.2018.09.248
- Ha QP, Vakiloroaya V (2012) “A Novel Solar-Assisted Air-Conditioner System for Energy Savings with Performance Enhancement” Procedia Engineering (vol. 49, pp. 116–123) https://doi.org/10.1016/j.proeng.2012.10.119
- Qdah KSA (2015) “Performance of solar-powered air conditioning system under AlMadinah AlMunawwarah climatic conditions” Smart Grid and Renewable Energy (vol. 6, no. 7, pp. 209–219) https://doi.org/10.4236/sgre.2015.67018
- Vakiloroaya V, Ismail R, Ha QP (2013) “Development of a New Energy-Efficient Hybrid Solar-Assisted Air Conditioning System” ISARC Proceedings (pp. 54–65)
- Mohanasundaram A, Valsalal P (2023) “Design of a wind-solar hybrid energy air conditioning system using BLDC motor for the Indian home environment” Electr Eng (vol. 105, no. 3, pp. 1717–1728) https://doi.org/10.1007/s00202-023-01759-w
- Song A, Lu L, Ma T (2017) “Life-cycle evaluation of different types of cooling systems in buildings” Energy Procedia (vol. 142, pp. 1743–1748) https://doi.org/10.1016/j.egypro.2017.12.558
- Gao Y, Ji J, Guo Z, Su P (2018) “Comparison of the solar PV cooling system and other cooling systems” International Journal of Low-Carbon Technologies (vol. 13, no. 4, pp. 353–363) https://doi.org/10.1093/ijlct/cty035
- Otanicar T, Taylor RA, Phelan PE (2012) “Prospects for solar cooling – An economic and environmental assessment” Solar Energy (vol. 86, no. 5, pp. 1287–1299) https://doi.org/10.1016/j.solener.2012.01.020
- Albatayneh A, Jaradat M, Al-Omary M, Zaquot M (2021) “Evaluation of coupling PV and air conditioning vs. solar cooling systems—Case study from Jordan” Applied Sciences (vol. 11, no. 2, pp. 511) https://doi.org/10.3390/app11020511
- Palomba V, Wittstadt U, Bonanno A, Tanne M, Harborth N, et al. (2019) “Components and design guidelines for solar cooling systems: The experience of ZEOSOL” Renewable Energy (vol. 141, pp. 678–692) https://doi.org/10.1016/j.renene.2019.04.018
- Al-Yasiri Q, Szabó M, Arıcı M (2022) “A review on solar-powered cooling and air-conditioning systems for building applications” Energy Reports (vol. 8, pp. 2888–2907) https://doi.org/10.1016/j.egyr.2022.01.172
The author(s) has received no specific funding for this article/publication.