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ABSTRACT 
Climate change has intensified extreme rainfall and flood events, posing significant threats to urban 
sustainability. Floods, among the most catastrophic disasters, disrupt livelihoods and irreversibly 
damage economies, making disaster risk reduction critical for achieving safe, inclusive, and sustaina-
ble cities in line with the Sustainable Development Goals. Urban resilience, reflecting a city’s ability to 
respond, recover, and maintain core functions during disasters, is challenging to assess due to complex 
urban system interactions and the non-linear nature of climate emergencies. This study examines re-
silience through land use changes as indicators of urban sustainability against flood disasters, using 
Colombo City, Sri Lanka, as a case study. The research evaluates urban flood resilience (UFR) based on 
ten natural, physical, and social parameters, integrating urban growth simulation, flood modeling, and 
geospatial assessments at a 30-meter resolution. Land use categories; waterbodies, wetlands, vegeta-
tion, and urban built-up areas; were analyzed alongside resilience classifications ranging from flood-
susceptible to highly responsive. Results reveal that high-resilience areas are concentrated in vege-
tated high elevations and urban zones with effective drainage systems, while low-resilience areas are 
heavily populated floodplains and impervious city-center areas with limited greenery. Regression 
analysis confirms that impervious surfaces exacerbate flood risk, while vegetation and wetlands pro-
vide long-term resistance to extreme rainfall. The findings emphasize the need for green infrastruc-
ture-oriented drainage networks and sustainable urbanization to mitigate pluvial floods. Incorporat-
ing land use changes and socio-economic factors highlights the importance of disaster preparedness 
at the grassroots level for effective mitigation strategies. From an urban planning perspective, this 
approach aids in guiding future land use changes, prioritizing sustainable growth, and informing de-
cision-makers on resource allocation to enhance flood resilience in cities. 

Keywords 
− Urban resilience 
− Floods 
− Climate change 
− Land use change 
− Sustainable cities 
− Colombo  

 

Received: November 01, 2024; Revised: January 09, 2025; Accepted: February 17, 2025; Published: June 30, 2025  ©2025 REPA. All rights reserved. 

1. Introduction  
The rapid growth of technology and innovation in the last 
century has improved the quality of life of the urban pop-
ulation. Most importantly, this has happened in cities 
where necessary infrastructure and services are available 
to facilitate creativity and human desires. Cities account 
for over 80% of the global Gross Domestic Product, are 
home to over 56% of the global population, and occupy 
only about 3% of the total land area globally [1,2]. The 
concentration of economic activities encouraged rural-to-
urban migration, and the urban population is expected to 
reach over 68% by 2050, as about 7 of 10 people will live 
in cities [3].  

Accumulating such a population in comparatively mod-
est spatial entities can have economies of scale while in-
creasing vulnerability to internal, external, and unfore-
seen threats. Since the competition for limited resources 
in the world is growing, pressure on natural resources and 
ecosystems can induce the risk of cities to natural hazards 
such as floods [4]. Climate change, urbanization, economic 
competition, and over-extraction of resources are some of 
the reasons for the unprecedented trend of hazards at 
high frequency and intensity [4,5]. Floods are one of the 
most catastrophic disasters cities face, affecting millions 
of populations and damaging economies in an irreversible 

way [6]. Many cities have invested in structural measures 
and adaptive strategies over the past to tackle the negative 
impacts of flood disasters on cities. Yet, the destruction 
and losses have continued consistently. In this context, 
disaster management in cities is paramount in promoting 
safe, inclusive, and sustainable human settlements, as 
identified by Sustainable Development Goals [7]. 

Scholars have recently focused on measuring the ability 
of cities to respond to flood disasters and manage the vul-
nerability to natural hazards from an urban resilience per-
spective [8–11]. However, the seminal work in the past 
decades shows a single focus or several aspects of vulner-
ability in flood resilience studies, including community, in-
frastructure, governance, or environmental features. 
Moreover, the primary focus was on conceptual frame-
works, while limited attention to operational models or 
supported empirical evidence to measure the resilience of 
cities to natural hazards like floods [12–14].  

However, cities are complex entities with intercon-
nected networks and interdependencies on multiple spa-
tial and temporal scales. According to [15], vaguely de-
fined ‘urban’ definitions and limited understanding of 
trade-offs involved in resilience studies focused on cities 
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have caused conceptual tensions and inconsistency in ur-
ban resilience research. This study conceptualized urban 
resilience as an integrated equilibrium between natural, 
human, and physical systems within cities. Application of 
an interdisciplinary framework to assess urban resilience 
at the micro spatial scale could reveal the location-specific 
hotspots ranging from vulnerable communities to critical 

infrastructure and essential services in a flood disaster. 
This framework is a novel approach to identifying resili-
ence at the local level and simulating resilience change 
due to climate change and urbanization policy of cities, 
which can be useful for urban planners and disaster man-
agers in climate resilience decision-making. The concep-
tual framework is shown in Figure 1. 

 
Figure 1. Conceptual framework of urban flood resilience and system interactions.

According to Figure 1, urban flood resilience is not a dis-
crete phenomenon but an evolving dynamic process with 
multiple interactions. It is not only represented by the nat-
ural and physical elements of a city but also by the social 
layers of communities and their behavior patterns. The 
sustainability of a city is influenced by changes in nature, 
such as climate change and weather-related impacts.  In 
the case of floods, the triggering factors could be extreme 
rainfall, limited impervious cover, limited drainage capac-
ity, and so on [16,17].  

However, the city’s recoverability from floods depends 
on the level of impact on the built form and population. 
The socio-demographic changes over the years and the 
movement of resources within the city can affect the bal-
ance of city functions and the magnitude of the damage 
caused by floods. Therefore, the physical risks or flood in-
undation models alone cannot determine resilience, 
where socio-demographic factors will also play a crucial 
role. Hence, this framework incorporates a three-step an-
alytical framework that can support mitigation and adap-
tation policies of a city to optimize resource allocation 
during natural disasters such as floods. 

Sustainability can be broadly defined for an urban sys-
tem based on its preparedness for future stresses such as 
floods. However, due to the dynamic nature of urban sys-
tems, it is challenging to model or assess the long-term im-
pacts of existing cities. At the same time, priorities set by 
the Sendai Framework [18] highlight the importance of 
community resilience through risk identification and en-
hancing cities’ preparedness through multiple strategic 
frameworks.  

In this study, we quantify urban flood resilience through 
socio-demographic factors incorporating vulnerability 

and coping capacity as key city sustainability measures. 
The novelty of this framework is that this approach (Fig-
ure 1) complements the existing physical risk parameters 
while incorporating social environmental factors to de-
note the sustainability of cities.  

Moreover, non-spatial social conditions can be repre-
sented in spatial strategy formulation to support decision-
making bodies and merge conceptual frameworks into op-
erational models using ground-level information.  Apply-
ing this framework in Colombo City, Sri Lanka, shows that 
coastal cities with flood risk need integrated solutions to 
“Build Back Better” using multidisciplinary approaches 
for disaster management [19] 

2. Methodes 

2.1. Overview of analytical framework 

This study follows three key steps to quantify flood resili-
ence using the conceptual framework presented in Figure 
1. The study formed three objectives to assess the flood 
resilience of cities. First, land use change assessment and 
simulation for multiple growth paradigms. In this step, the 
spatial simulation incorporates land use change based on 
previous and impervious areas in cities.  

Machine Learning models are incorporated to assist in 
classifying land use under four categories: waterbodies, 
wetlands, vegetation, and built-up areas. The Cellular Au-
tomata model is used for simulation exercises in Python 
environments. Second, a flood model was developed to as-
sess the runoff retention during a flood event. The Urban 
Flood Risk Mitigation (UFRM) model [20] gives useful spa-
tial insights on runoff quantities to measure the impervi-
ous cover’s impact on the spatial distribution of floods. 
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Inputs from land use change and actual rainfall scenarios 
assist the simulation of flood patterns within a city based 
on soil permeability and curve numbers. Third, the socio-
demographic factors are incorporated into flood resili-
ence assessment. In this final step, multiple social param-
eters were analyzed with flood impact using feature selec-
tion tools from Machine Learning models. Out of 28 varia-
bles selected from the literature, three social factors were 

selected, representing population, housing, and infra-
structure accessibility. Once the parameters were set, 
flood vulnerability and coping capacity were spatially ag-
gregated using 30-meter pixel resolution. Geospatial tech-
niques are used to calculate urban flood resilience by in-
corporating normalized parameters in the ArcGIS Pro en-
vironment. The analytical framework used in this study is 
shown in Figure 2. 

 
Figure 2. Analytical framework of urban flood resilience assessment.

2.2. Land use simulation and runoff retention assessment 

In the first step, land use land cover classification is con-
ducted using Machine Learning (ML) models. ML models 
show better accuracy and efficiency in land use classifica-
tion compared with traditional methods of geospatial clas-
sification [21]. Landsat satellite images were obtained 
from the United States Geological Survey website for the 
period from 2000 to 2020 using world features with less 
than 20% cloud cover.  

Once the image processing was completed using ArcGIS 
Pro software, the supervised image classification was con-
ducted in a Python programming environment using the 
Anaconda 3 Jupyterlab software package. Multiple ML 
models were applied for classification and calibrated us-
ing hyperparametric optimization and confusion matrix. 
Accordingly, the Random Forest (RF) classification 
method gave the highest accuracy for the classified cate-
gories of waterbodies, wetlands, vegetation, and urban ar-
eas in the case study area.  

Once the RF output is obtained, the next step is to com-
plete the flood risk assessment for extreme rainfall condi-
tions. For this, the Urban Flood Risk Mitigation (UFRM) 
model was used, which is a part of the Integrated Valua-
tion of Ecosystem Services and Trade-Offs (InVEST) Model 

[17]. The UFRM model uses InVEST 3.13.0 workbench, an 
open-source software module, to calculate the runoff pro-
duction using spatially explicit data sources to generate 
maps as outputs. Soil Conservation Service Curve Number 
(SCS-CN) or CN is a dimensionless parameter used to ex-
plain the runoff response of a watershed by using a hydro-
logic soil cover complex [22].  

According to [22], soils are classified into four main 
groups based on the bare soil surface, maximum swelling 
capacity, temperature response, and water intake and 
transmission under maximum wetness conditions. The 
UFRM application generates the run-off retention of each 
sub-catchment based on the maximum rainfall and land 
cover characteristics.  

Therefore, it gives the level of flood retention capacity 
using geomorphological characteristics and impervious 
cover on the city scale. Once the run-off retention is calcu-
lated, the resilience index is calculated based on natural, 
physical, and social parameters. 

2.3. Social feature selection 

Conventional flood resilience methods use physical risk or 
hydrology models through geospatial techniques to assess 
urban flood risk or resilience. In contrast, social 
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vulnerabilities and non-spatial community-based factors 
are assessed separately. However, socio-demographic fac-
tors play a vital role in managing vulnerability or coping 
capacity of flood events [23–25]. This study used socio-
ecological factors driven by community response to floods 
to determine long-term resilience.  

Due to the vast literature on social factors, selecting im-
portant features for resilience assessment was challeng-
ing. However, with expert consultation and contextual fac-
tors, the social features were selected under three key cat-
egories: population, housing, and infrastructure. For the 
selection process, regression models were incorporated 
by adopting “Feature Selection” models in Python pro-
gramming language. 

Feature selection is one of the dimensionality reduction 
techniques used in ML models. In flood resilience studies, 
the availability of multiple socio-economic and demo-
graphic factors may lead to overfitting or underfitting of 
the ML model. Therefore, it is vital to select the factors that 
influence flood impact to improve the quality of the se-
lected database.  

This study used supervised feature selection methods 
involving filter-based and wrapper-based approaches. 
“Sci-kit Learn” – a free and open-source library for Python 
programming was applied in the analytical process, and 
the “Sweetviz” project was utilized for data visualization 
and exploratory data analysis [26,27].  

The feature engineering process used the multicolline-
arity test and variance threshold measurement of all the 
socio-demographic variables before undertaking the re-
gression analysis. Once the highly correlated features and 
features with low variance are removed, a model-based 
sequential feature selection process is employed. In this 
step, significant features based on the relative importance 
of the predictive feature are selected. The impact of floods 
on residential communities was selected as a dependent 
or predictive variable.  

Linear regression and tree-based models such as “Ran-
dom Forest and Extreme gradient Boosting” were used to 
select important features under three key categories. Once 
the social features were selected, they were combined 
with natural and physical features to conduct the flood re-
silience assessment. 

2.4. Cellular automata model for land use projections 

Cellular Automata (CA) is one of the commonly applied 
land use change models, which simulates complex sys-
tems and non-linear growth of urban areas effectively 
[28]. CA models are capable of simulating non-linear spa-
tial interactions of complex ecosystems as against tempo-
rally explicit analytical models like system dynamics 
[29,30].  

Moreover, CA models proved their effectiveness with 
simplicity in application, ability to generate complex 

patterns, and powerful spatial and temporal integration 
with Geographic Information Systems (GIS) [31,32].  

CA model assumes that land use change emerges from 
the local interaction of spatial activities, which accounts 
for urban expansion from locally driven factors. The land 
use change modeling process use a two-dimensional lat-
tice in which the simulation depends on the existing cell 
state, state of neighboring cells, discrete time step, and 
specific transition rules [30,33].  

The CA algorithm is developed to simulate land use land 
cover changes using satellite images from 2020 to 2030. 
LANDSAT 7 ETM+ and LANDSAT 8 image data from the 
United States Geological Survey (USGS) with 30m resolu-
tion (8 bands) are used for the land use classification and 
pre-processing for CA modeling work. 

The Cellular Automata framework used multiple pa-
rameters ranging from existing land use and land cover, 
population density, proximity to main roads, distance 
from the city center (CBD), slope, existing planning regu-
lations, and natural constraints or conservation areas. Dis-
tance from roads is classified into 500m intervals, and ar-
eas closer to main roads with high accessibility are given 
high potential for urban growth and vice versa. Similarly, 
distance from the CBD is also taken to measure the non-
uniform growth of urban areas.  

CA model rules depict the existing growth patterns and 
key variations in the development trend. The existing 
built-up lands and waterbodies are exempted from elimi-
nation, while vegetation or open spaces are transformed 
into built-up forms based on threshold values and neigh-
boring built-up counts. Moreover, restricted and conser-
vation zone pixels are not eliminated while maintaining 
the consistency of unchanged pixels in the testing phase of 
the CA model.  

Threshold values for multiple growth factors are ob-
tained by trial and error to suit real-world conditions, and 
the calibration process is conducted by spatially subtract-
ing the built-up pixels from post-simulation. Python pro-
gramming language (Version 3.8) in Jupyter Notebook 
was used to run the CA modeling algorithm.  

2.5. Case study: Colombo city and suburbs, Sri Lanka 

Colombo City and its suburbs are located on the Western 
coast of the South Asian Island nation of Sri Lanka, which 
has experienced rapid urbanization in recent decades. Ke-
lani River is the third largest river in the sense of annual 
discharge volume, having a catchment area of 2,292 km2, 
which meets the Indian Ocean at the northern boundary 
of Colombo City [34].  Kelani River Lower Basin (KRLB) – 
mostly a flat terrain – where Colombo and its suburbs are 
located has been selected as the case study to test resili-
ence assessment. The City of Colombo is prone to flooding 
and faced a major flood event in May 2016, which lasted 
over 6 days due to Monsoon rains (Figure 3).  
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Unprotected areas in the basin have critical infrastructure, 
population concentration, and well-connected wetland 
networks that face significant impacts during major flood 
events [35,36]. KRLB is prone to minor floods on an an-
nual basis due to monsoonal rains. In contrast, major 
floods occurred in 2008, 2016, and 2024 due to multiple 
rainfall events in highlands and coastal cities, creating 

increased runoff to overflow of Kelani River. For analytical 
purposes, KRLB sub-basins were used for natural and 
physical factor modeling, while corresponding admin-
istration boundaries were used for social parameter esti-
mates. The administrative boundaries of the study area 
and flood distribution are shown in Figure 4. 

 
Figure 3. The flood damage occurred in May 2016 in Colombo city and the suburbs (Source: Sri Lanka Air Force, with permission). 
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Figure 4. Flood distribution and case study boundary of Kelani River Lower Basin, Sri Lanka.

3. Results 

3.1. Land use simulation and flood modeling 

The processed satellite images from Landsat are classified 
into land use and cover types using supervised image clas-
sification techniques. Random Forest (RF) classification 
provided better accuracy than Decision Tree (DT) and 
Support Vector Machine (SVM) Techniques. Land use 
maps prepared for 2021 were validated with actual land 
use datasets provided by the Urban Development Author-
ity (UDA) of Sri Lanka.  

The accuracy levels of RF, DT, and SVM methods were 
83.3%, 76.1%, and 77.8%, respectively. The confusion ma-
trix prepared for each land use classification method is 
shown in Figure 5, and the classified land use map for 
2001 and 2021 is shown in Figure 6 to compare the built 
area expansion. 

According to Figure 6, the urban built-up area has in-
creased from 6.35% to 27.5% in the last 20 years, while 
the vegetation area has reduced from 60.35% to 45.37% 
of the total land. The wetlands, which are a common fea-
ture in Colombo’s landscape, have reduced from 32.42% 
to 27.49% during the period, showing disruptions to 

hydrology flow within the city. The waterbodies domi-
nated by the Kelani River occupy about 1% of the total 
land area. It is visible that Colombo's city-centered urban 
growth expansion is a significant aspect of urban growth, 
and Kelani River has been at the center stage of this 
growth. However, according to UDA, Colombo’s urbaniza-
tion trajectory in the past few decades shows spontaneous 
growth with sprawling effects along main roads spiraling 
away to suburban areas.  

KRLB and its floodplain are also impacted by this 
change in built-up areas. The flood modeling process re-
vealed the change of run-off retention resulting from such 
land use change effects. The UFRM model used the soil's 
saturated hydraulic conductivity as the starting point of 
flood analysis. However, this model does not consider 
rainfall's spatial and temporal dynamics over the study 
area or other influencing factors like temperature. The 
maximum rainfall (250 mm) recorded during the last 
flood event (2016) was used for the model with varying 
geomorphological factors. 17 sub-basins within the study 
area were used with soil categories of sandy and clay as 
the input parameters. Soil condition-based Curve Num-
bers (CN) used for each land use category are shown in 
Table 1. 
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Figure 5. Confusion matrix generated for RF, DT, and SVM methods using Python programming methods

 
Figure 6. Classified land use land cover map of the case study area from 2001 to 2021.

Table 1:   Curve number (CN) values used for land use land 
cover categories within the study area [37,38]. 

Code 
2022 Land 
Use (%) Land use Type CN - A CN - B CN - C CN - D 

1 1.64 Waterbodies 100 100 
61 
65 
92 

100 100 
2 25.49 Wetlands/ 

Paddy fields 
39 74 80 

3 45.37 Vegetation 43 76 82 
4 27.50 Urban Areas 89 94 95 

 

The UFRM model revealed the runoff retention during 
peak rainfall as an index relative to precipitation volume 
ranging from 0 to 32.9%. Accordingly, sub-watersheds 
closer to Colombo city show relatively high flood risks, 
while vegetation-rich hinterlands show lower flood risks 
with higher run-off retention capacity. Figure 7 shows the 
run-off retention in the study area on the sub-watershed 
basis and pixel-wise flood distribution during peak rain-
fall. 
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Figure 7. Potential flood distribution by pixels during an extreme rainfall (left) and run-off retention capacity by sub-basin level 

(right) for 2022 land use land cover distribution.

Figure 7 shows run-off retention values range from 0% 
(water) to 74.08% (vegetation) and proportionately var-
ied based on land use types. The results were validated 
with actual flood data from the May 2016 floods using wa-
ter level data from river gauges. However, floodwater dis-
charge quantities slightly differed due to temporal rainfall 
variations and upstream water flow variations within the 
Kelani River during the 2016 floods.  

Nevertheless, run-off retention and land use change re-
sults sufficiently explain the spatial distribution of floods; 
hence, they are used for spatial analysis. 

3.2. Socio-demographic analysis 

Social variables for the resilience assessment were se-
lected from dimensionality reduction techniques. Grama 
Niladhari (GN) divisions were used as the smallest admin-
istration boundary for the data collection, and census data 
from government-published reports were obtained for 
analysis in 2001 and 2011.  

Flood records were available for 569 GN divisions, and 
census data for 1734 GN divisions were collected from 
two districts from KRLB. Once the dataset was cleaned and 

preprocessed, a CSV file was generated for analysis in a 
Python environment. 24 parameters were selected under 
population, housing, and infrastructure categories, and 
the multicollinearity test screened 13 variables.  

Figure 8 shows the multicollinearity test matrix devel-
oped using Google Colaboratory. The heatmap was gener-
ated using correlation among variables of over 10% or 
more. The selected variables for the regression test are 
shown in Table 2.  

Selected 13 variables were used as independent varia-
bles (X), and flood records were used as dependent varia-
bles (y) for regression analysis. Random Forest Regres-
sion used 500 estimators with a depth of 10, and Extreme 
Gradient Boosting (XG Boost) was used afterward with 
500 estimators and a depth of 5.  

Three independent variables were selected based on 
the highest relative importance. Households with access 
to drinking water (0.3511), Total dependent population 
(0.1579), and houses with permanent structures (0.1078) 
were selected for the resilience analysis based on regres-
sion results. The feature importance results from Random 
Forest and XG Boost methods are illustrated in Figure 9. 
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Figure 8. Correlation matrix developed for social variables where yellow color denotes high correlation and green color denotes 

low correlation among variables.

Table 2:   Independent variables selected for regression analysis under key social dimensions. 
Population parameters Housing parameters Infrastructure parameters 
Total Female Population Houses with a permanent structure Access to a main power grid 
Total Dependent Population  Houses with two or more floors Access to pipe-borne water 
Educated Population (Secondary) Ownership of the houses Availability of water-sealed toilets 
Total employed population  Waste management service access 
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Figure 9. Relative importance values for multiple social variables in explaining the flood impact within KRLB.

3.3. Future land use projection 

The Cellular Automata (CA) model used population data 
recorded from the census records from 2001 to 2011 and 
land use change data from satellite image processing. The 
distance from CBD was 5km to 45km from the center, 
while the distance buffer set for main roads was 500m to 
5km. The threshold values were taken based on land use 
simulation based on actual classification up to 2021 and 
trial and error for assigned threshold values. Differences 

between classified images were computed by built-up 
pixel change, and a proportion of non-zero values was 
taken for accuracy assessment.  

The land use land cover change simulation comprised 
from 1 to 4 depicting waterbodies to built-up areas similar 
to land use land cover classification. Figure 10 shows the 
results of the simulation pattern in the Python program, 
and Figure 11 shows the land use change map for 2031 
based on existing urban sprawling effects. 

 
Figure 10. Visualization of land use and land cover maps using the CA model in Python.

The highest overall accuracy level of the CA model was 73.02%, 
and it achieved about a 3% increase in built-up areas in ten years 
with a 2% decrease in vegetation areas.  According to Figure 11, 
the existing urbanization trend continues with restrictions on  

expansion to wetlands and water bodies. However, strict regula-
tions are necessary to control the urban sprawl towards the 
floodplain of KRLB and wetland areas within Colombo City and 
its suburbs. 
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Figure 11. Simulated land use and land cover map of 2031 

based on the CA model for Colombo City and sub-
urbs. 

Land use change from 2001 to 2031 is shown in Table 3, 
as urban growth can spur the built-up area growth unless 
spatial growth control strategies are not implemented. 
However, it is important to assess the resilience change 
for flood risk in the city in the face of land use, land cover 
change, and climate change impacts. 

According to Table 3, it is clear that urbanization has a 
significant impact on land use change, with growth of over 
300% in the study period. The population has significantly 
increased during the last 20 years, affecting the region's 
adaptive capacity and physical vulnerability. The resili-
ence assessment incorporates both these factors in spatial 
analysis. 

3.4. Urban Flood Resilience Assessment 

Once the parameters were selected, the spatial distribu-
tion of each parameter was mapped for resilience index 
calculation. Based on the literature review, expert opinion, 
and dimensionality reduction techniques, ten parameters 
were selected for the resilience assessment, which was 
classified under natural, physical, and social environ-
ments in line with the conceptual framework presented in 
Figure 1.  

The selected parameters for spatial analysis are shown in 
Table 4. 

Table 3:   Curve number (CN) values used for land use land cover categories within the study area [37,38] (The total study area is 
about 1,020 sq. km covering two districts around Kelani River Lower Basin). 

Land use type 
Share in (%)  
2001  

Share in (%)  
2011  

Share in (%) 
2021  

Share in (%) 
2031  Growth over 30 years 

Waterbodies 0.88 0.96 1.61 
25.47 
45.42 
27.49 

1.61 + 82.96% 
Wetlands 32.42 15.64 25.47 - 21.44% 
Vegetation 60.35 60.80 44.61 - 26.08% 
Built-up 6.35 22.61 28.31 + 345.83% 

Table 4:   Parameters selected for the flood resilience calcula-
tion. 

Natural Environment 
Variables 

Physical Environ-
ment Variables 

Social Environment 
Variables 

Elevation or Slope Building Footprint 
Density 

Total Dependent 
Population 

Waterbodies and 
Wetlands Density Road Density 

Density of Houses 
with Permanent 
Structures 

Vegetation Cover 
Density 

Flood Relief Loca-
tions Density 

Households with Ac-
cess to Safe Drinking 
Water 

 

The non-spatial parameters were calculated based on the 
GN divisions (the smallest administration boundary) and 
converted into raster images at 30-meter resolution. Once 
the parameters were normalized using spatial analyst 
tools of ArcGIS Pro software, the 10 variables were 
resampled using the “Nearest Neighbor” method to match 

the pixel boundaries. The normalized maps are presented 
in Figure 12 and used for resilience assessment in the next 
step. 

The parameters were categorized based on the influ-
ence on flood resilience and weighted using the Analytical 
Hierarchy Process. The parameters were pairwise com-
pared using experts in the field, specifically from urban 
planning, disaster management, and academic disciplines. 
The consistency ratio was 0.08, indicating reasonable con-
sistency levels among pairwise comparisons. The influ-
ence was measured positively and negatively based on 
adaptive capacity and risk-based vulnerability [39].  

Permanent housing stock, access to safe drinking water, 
locations above 5 degrees elevation, vegetation cover, and 
availability of relief centers or points of interest for flood 
recovery are considered positive factors influencing the 
resilience to urban floods.  

https://doi.org/10.37357/1068/JESR/4.1.01


Peiris MTOV | Journal of Environmental Sciences Revolution 12 

 

J Environ Sci Rev 2025, 4 (1): 1-17      www.repaus.org/journals/jesr 

 

So, the remaining factors were considered as negatively 
influencing flood resilience. The parameters were spa-
tially overlaid, and pixel values were reclassified based on 
the quartile range for weighted overlay in ArcGIS soft-
ware. Raster images were given equal weights in the 
weighted overlay analysis with an evaluation scale of 1 to 
10 by 1.  

The final output comprised 30-meter resolution maps 
with values ranging from 1 to 4, with 1 being the least re-
silient and 4 being the highest resilient location. The urban 
flood resilience map for 2031 was simulated with popula-
tion change as predicted by the government records and 
land use land cover maps generated from the Cellular Au-
tomata model.  

 
Figure 12. Normalized spatial representation of parameters for resilience calculation.

Figure 13 shows the resilience maps generated for 2021 
and 2031 based on selected spatial parameters. Figure 13 
revealed that the existing urbanization trend will move to-
wards vegetation-rich suburban areas if the wetlands and 
waterbodies are preserved from 2021 to 2031. However, 

the highest resilience values (dark green) will decrease by 
about 4%, while the least resilience values (red) will in-
crease by approximately 44% within the study area if this 
trend continues. The land area by resilience values is ex-
plained in Table 5. 

Table 5:   Share of land area (percentage) depicted by resilience values for 2021 and 2031. 
Code Color Interpretation 2021 Land Area (%) 2031 Land Area (%) 
1 Red Low Resilience 

Medium Resilience 
High Resilience 
Very High Resilience 

5.86 8.43 
2 Orange 33.46 33.56 
3 Light Green 45.05 43.00 
4 Dark Green 15.63 15.01 

The resilience values are validated by using the spatial 
agreement index in ArcGIS software. Pixel values of resili-
ence raster files were reclassified based on “resilience ver-
sus non-resilience” values, and zonal statistics of binary 
raster were computed for proportional agreement.  

 

 

Accordingly, 1,22,220 pixels were analyzed, and 82.48% 
spatial agreement was found among flood resilience pixels 
and hot spot Z score values. Figure 14 shows the results of 
the spatial agreement test plotted using a confusion ma-
trix. 
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Figure 13. Urban flood resilience for 2021 and 2031 calculated for Kelani river lower basin, Colombo, Sri Lanka.

 
Figure 14. Spatial agreement of flood resilience pixels of 2021 resilience maps.

4. Discussion 

This study used a multidisciplinary framework to meas-
ure urban flood resilience using natural, physical, and so-
cial environmental factors as key determinants of the sus-
tainability of cities. In line with Sustainable Development 
Goal 11, this framework forms a bottom-up approach to 
monitor the existing mitigation and adaptation frame-
works on the safety and inclusivity of the residents living 
in cities prone to natural disasters.  

The analytical framework assists urban planners and dis-
aster managers in strengthening the resilience strategy in 

two ways. First, it revealed that a small spatial scale (30-
meter resolution) is ideal for identifying disaster hotspots 
and managing the risk levels through inclusive safety nets. 
For example, in Colombo, the local governments focus 
only on the flood-inundated areas and allocate resources 
based on the physical impacts. However, the damage from 
floods has moved beyond inundated areas causing supply 
chain disruptions, health, and epidemic risks, along with 
long-term economic impacts [19,35,40].   

Therefore, hydrodynamic models and physical vulnera-
bility models alone cannot capture such complexities in 
cities.  
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According to Figure 13, the least resilient regions (red col-
ored) are the areas with the highest vulnerability in a 
flood event and need to analyze socio-economic condi-
tions and demographic factors that can contribute to risks 
in a flood event. Secondly, the results show the impact of 
land use change beyond administrative boundaries. In the 
past, strategies for flood mitigation were oriented only on 
the south bank of the Kelani River (excluding the north 
bank, which is a different district boundary) and proposed 
solutions to manage floods in Colombo [41].  

This has resulted in a significant spatial imbalance in re-
source allocation for flood mitigation and adaptation. As 
seen in Figure 13, the future risks cannot be targeted on a 
single spatial entity, while flood resilience must be man-
aged in a holistic way. Moreover, existing infrastructure 
projects such as expressways, water supply, and power 
distribution projects need to be located in areas with 
higher resilience by incorporating the natural, built, and 
socio-economic factors contributing to flood resilience. 
Therefore, this framework assists the planning agencies in 
addressing the complexity of urban interactions and en-
sures a safe and inclusive spatial strategy for highly urban-
izing cities like Colombo. 

Land use change is one of the key determinants of urban 
growth, and city planners are responsible for orienting the 
growth to make it sustainable for future living. In Co-
lombo, the urban built-up areas (including all impervious 
areas) have increased by over 300% in the last 20 years 
(Figure 6). Since growth is inevitable, land use plans must 
be robust enough to adapt to disaster risks and climate 
change impacts in the coming years. The simulated land 
use change map (Figure 11) and flood resilience map (Fig-
ure 13) reflect the non-linear impacts of land use on the 
flood resilience variation in the city.  

Moreover, the Sri Lankan government has proposed 
structural mitigation measures to tackle the flood risk 
through a series of floodwater pumping stations and res-
ervoir construction to manage runoff in Colombo and sub-
urbs [41]. This framework can be used to assess the effec-
tiveness of such projects in terms of the recovery capacity 
of the city and optimize such projects through validation. 
One of the challenges in the seminal work is that there are 
limited operational models to monitor and evaluate exist-
ing urban dynamics and changes due to the highly theo-
retical nature of resilience research.  

However, this study used a novel framework (Figure 1) 
to combine different aspects of resilience along with ur-
ban system interactions to provide a holistic view of flood 
resilience. This study used urban planning professionals 
and disaster managers in Colombo City and its suburbs to 
validate the resilience results and obtain the representa-
tion of actual scenarios during recent flood events. Over 
70% of decision-makers agreed upon the flood resilience 
results at the micro-scale and cross-checked with the de-
velopment trends in the past 20 years to further validate 
the trends. Therefore, the results are statistically and 
physically validated using ground-level data and are 

useful for decision-makers to identify hotspots to improve 
flood preparedness in the future. 

This framework can be modified to monitor the pro-
gress of existing flood management projects and simulate 
the proposed plans to assess potential resilience path-
ways for Colombo City and the suburbs. Using growth con-
trols, urban planning professionals can optimize land use 
planning strategies to suit highly resilient conditions and 
minimize vulnerable hotspots in future plans.  One of the 
challenges in set conditions of Cellular Automata simula-
tion is its volatile nature.  

Since waterbodies and wetlands were considered re-
stricted, they can still be converted into built-up areas de-
pending on the conditions. Therefore, ensuring sufficient 
infiltration space for urban runoff is a critical factor in 
achieving sustainability and flood resilience in the future. 
This study can be further improved by using spatial dy-
namics during flood events (big data analysis) to show the 
temporal variation of resilience from the start point to the 
end point of flood phenomena. Colombo has been named 
as a wetland city [42] due to its network of wetland envi-
ronments, urban flood resilience in the face of develop-
ment pressure is vital in achieving the city's future sus-
tainability. 

5. Conclusion 
Floods are one of the destructive hazards causing multiple 
socio-economic and physical damages compared with any 
other disaster events that cities face today. Local govern-
ments use significant financial resources to mitigate 
floods and post-recovery of city functions. Urban planners 
and disaster managers commonly use physical vulnerabil-
ity and short-term flood risks in cities to assess resilience. 
However, this study argues that cities need a novel per-
spective to understand the flood risks in relation to land 
use change and urban system interactions.  

Conventional engineering solutions, let alone cannot 
solve complex problems associated with floods, as demo-
graphic and socio-political factors can dominate the re-
coverability and preparation for floods. This study used an 
interdisciplinary framework to assess the resilience at the 
micro-spatial scale in cities.  

Quantifying urban flood resilience through natural, 
physical, and social parameters can assist decision-mak-
ers in identifying optimal land use strategies while im-
proving flood preparedness for extreme events using co-
ordination and collaboration. Applying the framework to 
Colombo City has proved that land use change has influ-
enced urban resilience, and traditional command and con-
trol strategies may not be as effective as expected in dis-
aster risk reduction.  

Many studies used either social factors or physical risk 
factors to assess city vulnerability or resilience [43–47], 
which lacks the objectivity necessary to address the dy-
namic nature of cities. Even with novel technology, such 
models need justification from the conceptual basis while 
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applied in multiple contextual environments to validate 
the consistency.  

Therefore, this study proved a solid foundation to incor-
porate socio-demographic and ecological principles to 
quantify flood resilience, which can be applied in multiple 
urban contexts. However, the selection of desirable varia-
bles is important to reflect the ground realities of cities 
which can be unique in each context. 

One of the challenges in disaster management in cities 
is identifying the long-term implications of urban growth 
strategy on disaster management. Urban growth strategy 
proposed by planners is a vital component to incorporate 
flood resilience, which can have long-term impacts on 
flood recovery.  

Therefore, this framework is essential for planners to 
improve disaster preparedness and to simulate urbaniza-
tion trends to increase resilience. Moreover, the spatial 
distribution of resilience can assist disaster managers in 
operating efficiently in flood-prone regions and incorpo-
rate spatial simulation data to mobilize resources in future 
disaster events.  

This approach can be further improved by incorporat-
ing the stakeholder views on disaster resilience pathways 
and modeling behavioral patterns of the community dur-
ing flood events to validate the results. Moreover, deep 
learning and agent-based models can be used to measure 
the performance of non-linear variables during disaster 
events to specify the critical parameters of flood resili-
ence, which can be generalized into cities based on natu-
ral, physical, and social factors.  

This approach provides a novel interdisciplinary focus 
to disaster resilience research which can be tested among 
coastal flood-vulnerable cities to simulate a sustainable 
urban future with effective disaster risk reduction strate-
gies. 
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