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ABSTRACT 
In the rapidly evolving digital payment ecosystem, optimizing merchant incentives has become a stra-
tegic necessity for increasing transaction volume, improving platform loyalty, and fostering sustaina-
ble customer engagement. Traditional incentive schemes often rely on heuristic or fixed-rate models 
that fail to account for the dynamic and heterogeneous nature of merchant behavior. To address these 
limitations, this study introduces a novel data-driven framework that employs graph-based represen-
tation learning to model and analyze complex transactional interdependencies among merchants and 
consumers. By capturing structural and behavioral similarities through graph neural networks 
(GNNs), the proposed approach enables precise prediction of each merchant’s sensitivity to diverse 
incentive strategies. The model integrates transaction frequency, geographical proximity, and cus-
tomer overlap to generate interpretable embeddings that guide optimized budget distribution under 
financial constraints. Through an integrated optimization layer, incentives are allocated based on pre-
dicted responsiveness, ensuring that marketing expenditures are directed toward high-impact seg-
ments. Real-world experiments conducted on large-scale digital payment datasets validate the frame-
work’s effectiveness, demonstrating substantial improvements in merchant participation rates, trans-
action growth, and cost efficiency compared to baseline regression and deep learning models. The 
findings highlight the potential of combining machine learning, network science, and marketing ana-
lytics to design more adaptive and data-intelligent promotional systems, thereby paving the way for 
scalable and targeted incentive management in next-generation digital financial platforms. 
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1. Introduction  
The proliferation of digital transaction platforms, includ-
ing Alipay and Apple Pay, has reshaped financial interac-
tions in contemporary society [1]. A key goal for mobile 
payment providers is to expand their user base, fostering 
a shift from conventional payment methods to digital al-
ternatives for both businesses and consumers. 

To drive adoption, service operators deploy various 
promotional tactics, primarily through merchant-based 
incentives. These incentives, encompassing commission 
structures, discount vouchers, and supplementary busi-
ness services, are tailored to encourage vendors to pro-
cess payments via designated digital platforms [2]. For ex-
ample, Alipay assigns a distinct incentive QR code to each 
vendor, enabling them to extend rewards to customers. 
These rewards can be availed solely through Alipay trans-
actions, and in exchange, merchants accumulate commis-
sions based on the volume of successfully redeemed in-
centives [3].  

This framework, in which benefits are initially distrib-
uted to customers and subsequently reclaimed through 
transaction completions, establishes a model where 
higher payment activity directly correlates with increased 
merchant revenue [4]. 

Historically, commission structures for merchants have 
relied on predefined allocation strategies. However, mer-
chant engagement with incentives varies considerably. 
Certain vendors demonstrate a strong dependency 

between commission rates and transaction frequencies, 
whereas others exhibit minimal responsiveness to fluctu-
ating incentive levels. Accurately identifying merchants 
with pronounced sensitivity to promotional offers is es-
sential for optimizing marketing expenditure within pre-
defined financial limits [5]. 

Modeling the dependency between promotional incen-
tives and transaction frequency introduces several com-
plexities. The prolonged impact of incentives on merchant 
engagement must be accounted for, as vendors may only 
perceive substantial benefits after prolonged participa-
tion [2]. Additionally, financial constraints restrict the fea-
sibility of conducting exhaustive empirical evaluations to 
comprehensively define the incentive-response function 
for every merchant [4].  

Instead, an experimentally constrained methodology is 
frequently utilized, where predetermined incentive val-
ues, sampled from a fixed distribution (e.g., 1, 2, 5, 10, 20 
units of currency), are randomly assigned, followed by an 
observation of transactional responses [3]. 

Two principal obstacles emerge in this setting. Firstly, 
an effective representation learning approach is neces-
sary to cluster merchants based on their responsiveness 
to incentives, allowing for robust statistical inference of 
incentive-response relationships within these groups [6, 
7]. Secondly, the incentive transaction dependency for in-
dividual vendors can exhibit intricate patterns, 
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necessitating the incorporation of informed prior 
knowledge to mitigate estimation variability [8]. 

This research introduces a graph-based learning frame-
work to enhance the optimization of merchant rewards in 
digital payment marketing. Vendor behavior is analyzed 
through customer purchasing trends, extracting meaning-
ful insights from geographical transaction distributions. 
The evaluation of incentive-response relationships, de-
rived from real transactional datasets, reveals that trans-
action frequencies demonstrate a linear and consistent in-
crease with rising incentive levels. Experimental valida-
tion substantiates the efficacy of this methodology, show-
casing enhanced marketing performance. Finally, the 
problem of distributing incentives under financial limita-
tions is formulated as an optimization problem [5], lever-
aging a linear programming approach [3], with empirical 
testing conducted through real-world deployment on the 
Alipay platform.  

2. Background  
This section presents a concise review of relevant litera-
ture, emphasizing two core areas: dynamic pricing meth-
odologies and graph-based feature learning. These princi-
ples serve as the basis for the proposed strategy. 

2.1. Dynamic pricing strategies 

Dynamic pricing utilizes analytical techniques to tackle 
two fundamental issues: (1) forecasting consumer reac-
tions to diverse pricing schemes [2,3]; and (2) formulating 
optimal price points to fulfill business objectives [4,5]. 
These techniques allow businesses to evaluate promo-
tional effectiveness and identify strategic price settings to 
enhance revenue within specified timeframes. 

The framework of dynamic pricing is generally com-
posed of two key phases. Initially, predictive models lev-
eraging machine learning algorithms are applied to esti-
mate product demand [8], infer purchasing tendencies 
from incomplete transaction datasets, or analyze histori-
cal sales data to anticipate future market behavior. Subse-
quently, these estimations are integrated into optimiza-
tion models designed to establish pricing mechanisms 
that align with corporate objectives [5,9]. 

In the domain of mobile financial transactions, service 
providers adopt an analogous approach, striving to ex-
pand user engagement by incentivizing specific payment 
platforms [2]. Conventional studies predominantly rely on 
linear regression models to capture sales trends [4]. How-
ever, evaluating merchant receptivity to varying incentive 
structures introduces a distinctive challenge [5].  

Accurately determining incentive responsiveness 
across a vast network of merchants, particularly under 
constraints of limited data availability, remains an under-
explored subject. This research proposes a novel mecha-
nism for quantifying merchant-specific incentive adapta-
bility, extending beyond traditional dynamic pricing 
methodologies. 

2.2. Graph-based representation learning 

Graph-based representation learning has gained substan-
tial attention, particularly with the advent of graph neural 
networks (GNNs) [6,7,10], which encapsulate subgraph 
structures into latent embeddings. Consider an undirected 
graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  where 𝑉𝑉  represents a set of 𝑁𝑁  nodes, 
and 𝐸𝐸  consists of |𝐸𝐸| edges (𝑖𝑖, 𝑗𝑗). The graph structure is 
defined by a sparse adjacency matrix 𝐴𝐴 ∈ ℝ𝑁𝑁×𝑁𝑁 , a node at-
tribute matrix 𝑋𝑋 ∈ ℝ𝑁𝑁×𝑃𝑃, and a graph Laplacian operator 
formulated as 𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−1/2𝐴𝐴𝐷𝐷−1/2. These techniques uti-
lize local neighborhood aggregation to construct informa-
tive node embeddings. 

An influential framework, GraphSAGE, introduced a 
mechanism for aggregating neighboring node information 
via different pooling operations [6]. The general update 
rule can be described as: 

H(t+1) = σ�CONCAT�ψ�A, H(t)�, H(t)�W(t)�  (1) 

where 𝐻𝐻(𝑡𝑡) ∈ ℝ𝑁𝑁×𝐾𝐾 denotes the hidden layer representa-
tion at depth 𝑡𝑡 , initially set as 𝐻𝐻(0) = 𝑋𝑋 . The transfor-
mation matrix 𝑊𝑊(𝑡𝑡) is trained for each layer, 𝜎𝜎 represents 
a non-linear activation function, and 𝜓𝜓(⋅) is a neighbor-
hood aggregation function, such as mean or max pooling. 
By stacking multiple layers, the model assimilates infor-
mation from broader graph neighborhoods, enhancing 
node embeddings. 

To improve adaptability, attention-based strategies 
have been introduced, enabling dynamic neighborhood 
weighting based on relevance. Additionally, path-based 
filtering methods have been explored to refine aggrega-
tion regions, allowing models to learn more discriminative 
node representations. These methodologies have demon-
strated superior performance across various benchmark 
datasets, making them instrumental in diverse applica-
tions. 

Within the domain of mobile transaction networks, 
GNNs are employed to encode merchant characteristics 
based on consumer purchasing patterns [11, 12]. This 
technique helps uncover variations in customer engage-
ment, yielding structured embeddings that effectively de-
scribe merchant behaviors. Merchants with a wider cus-
tomer reach generally exhibit stronger transaction activ-
ity, while those catering to niche demographics often dis-
play lower responsiveness to promotional incentives. Fur-
thermore, spatial proximity frequently results in cus-
tomer overlap, leading to comparable merchant incentive 
adoption patterns.  

By structuring transactional relationships through 
graph-based modeling, an optimized strategy for incen-
tive allocation can be systematically developed, as ex-
plored in subsequent sections. 

2.3. Online experimentation and sensitivity analysis 

To evaluate the influence of financial incentives on mer-
chant engagement, a controlled online study was carried 
out, wherein varying incentive magnitudes were 
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randomly allocated [5]. This methodology facilitated the 
derivation of the objective-incentive function, capturing 
how business metrics evolve in response to incentive 
modifications. Data collection was performed across sev-
eral days, incorporating a diverse range of merchants 
transacting on the platform [3]. 

Given that each merchant's reaction to incentives is ob-
servable under only one experimental condition at any 
given moment, extrapolating these reactions to merchants 
with similar characteristics becomes essential [9]. It is 
postulated that merchants exhibiting comparable transac-
tional patterns display analogous responsiveness to finan-
cial stimuli. Regional trends in sensitivity are depicted in  

Figure 1, highlighting that neighboring regions often ex-
hibit correlated behaviors. This observation underscores 
the utility of graph-based learning models in capturing 
such structural relationships. 

 
Figure 1. Regional variations in incentive responsiveness. The 

𝑥𝑥-axis and 𝑦𝑦-axis correspond to longitude and lati-
tude, respectively. Higher values indicate increased 
sensitivity to financial incentives. 

2.4. Graph neural network-based framework 

Graph neural networks (GNNs) are employed to model in-
terdependencies among merchants by constructing a 
transaction-based network [6,7]. This network is defined 
as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 comprises merchants and custom-
ers, while 𝐸𝐸 denotes financial transactions. An adjacency 
matrix 𝐴𝐴 ∈ {0,1}𝑁𝑁×𝑁𝑁  is formulated, where 𝐴𝐴𝑖𝑖,𝑗𝑗 = 1  signi-
fies an interaction between nodes 𝑖𝑖 and 𝑗𝑗 [13]. 

Merchant-specific features 𝑋𝑋 ∈ ℝ𝑁𝑁×𝑃𝑃  encode business 
attributes, while transaction-related attributes 𝑍𝑍 ∈ ℝ|𝐸𝐸|×𝐷𝐷  
encapsulate details of financial exchanges [9]. The GNN 
propagates information iteratively through the following 
update mechanism: 

hi
(t+1) = σ �W(t)Tψ ��hj

(t) ∣ j ∈ N(i) ∪ i� ; θ��  (2) 

where ℎ𝑖𝑖
(𝑡𝑡) represents the feature embedding at layer 𝑡𝑡,𝜎𝜎 

is a non-linear activation function, and 𝜓𝜓(⋅) is an aggrega-
tion operator parameterized by 𝜃𝜃. Initial feature embed-
dings are initialized as follows: 

hi
(0) = Wx

TXi + ∑  j∈N(i) We
TZ(i,j)  (3) 

2.5. Monotonic mapping and optimization strategy 

The learned merchant embeddings from the GNN are 
mapped to an objective-incentive function through a con-
strained transformation [10]: 

f(i, c) = c ⋅ SOFTPLUS�Wg
Thi

(T)�+ RELU�Wp
Thi

(T)�  (4) 

where 𝑊𝑊𝑔𝑔  and 𝑊𝑊𝑝𝑝  project the embeddings into parame-
ters defining the gradient and intercept of the mapping 
function. This ensures a monotonic relationship between 
incentives and business performance, where the gradient 
𝑔𝑔𝑖𝑖 characterizes responsiveness [14]. 

To determine optimal parameters 𝛽𝛽 =
�𝑊𝑊,𝑊𝑊𝑥𝑥,𝑊𝑊𝑒𝑒 ,𝜃𝜃,𝑊𝑊𝑔𝑔,𝑊𝑊𝑝𝑝�, the following loss function is mini-
mized: 

min
β
 ∑  i,c L�f(i, c;β), yi,c�  (5) 

where ℒ(⋅) denotes the mean absolute error between pre-
dicted and actual business performance outcomes 𝑦𝑦𝑖𝑖,𝑐𝑐 . 
Model training is executed using the ADAM optimization 
algorithm with mini-batch updates in TensorFlow [15,16]. 

 
Figure 2. Graph neural network architecture integrating mon-

otonic mapping for incentive impact estimation. 

2.6. dataset overview 

The characteristics of the datasets employed in the exper-
imentation are outlined in Table 1 [2,4]. 

Table 1:   Overview of datasets used for experimentation.  

Dataset |V| |E| Node Attributes Edge Attributes Labeled Samples 
D1 90.08×10^6 161.7×10^6 4998 86 2.18×10^6 
D2 97.18×10^6 172.1×10^6 4998 86 2.31×10^6 
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2.7. Optimized incentive allocation via linear program-
ming 

The allocation of incentives is structured as a linear pro-
gramming task, utilizing the estimated function 𝑔𝑔(𝑖𝑖, 𝑐𝑐) [3]. 
The objective is to allocate the most beneficial interven-
tion to each vendor while adhering to a budgetary limita-
tion [4]. 

max∑  i,c g(i, c)b*(i, c)  (6) 

subject to: 

∑  i,c b*(i, c) ⋅ c ≤ B  (7) 

where the best intervention 𝑚𝑚 satisfies: 

m = arg max
c
 g(i, c)-c ⋅ μ  (8) 

with 𝜇𝜇 representing the optimal dual variable. The effec-
tiveness of this methodology is validated within Alipay's 
digital framework, with findings detailed in the next seg-
ment. 

3. Experimental evaluation 
This segment provides a comprehensive analysis of the 
system's efficiency. First, offline performance is scruti-
nized using datasets derived from digital trials. Subse-
quently, online evaluation is conducted by implementing 
the proposed framework within Alipay and comparing it 
against a multi-layer perceptron model that adopts the op-
timal strategy elaborated in Section 3.3. Due to confiden-
tiality constraints, certain numerical specifics that might 
be deemed sensitive are not revealed. 

3.1. Experimental configuration 

This section elaborates on the dataset employed for train-
ing the model and the corresponding experimental set-
tings [2]. 

Data Acquisition: The datasets originate from two dis-
tinct digital trials conducted over a span of 15 days each. 
Data gathering involved the arbitrary selection of 0.2% of 
vendors, who were then categorized into different test 
groups, each subjected to a predefined intervention. In to-
tal, 13 experimental groups were designed, each corre-
sponding to a distinct treatment to maintain an impartial 
allocation of merchants based on their responsiveness to 
promotional strategies [15]. 

The datasets encompass over two million tagged ven-
dors, with recorded business performance indicators, 
such as the volume of transactions finalized within the 
subsequent three days and the number of active days with 
completed sales in the same duration. The model is struc-
tured on a transactional network, where links symbolize 
interactions between labeled merchants and their two-
hop vicinity. This incorporates direct exchanges between 
merchants and customers, as well as secondary interac-
tions involving clients and additional vendors. The result-
ant transactional network comprises over 90 million enti-
ties, encompassing merchants and consumers, with 

hundreds of millions of transactional connections. A sum-
mary of the datasets utilized in offline trials is depicted in 
Table 2. Data from two separate timeframes were exam-
ined to validate the consistency of the observations. 

Table 2:   Overview of experimental datasets.  

Dataset Number of Vendors 
Number of Transac-
tions 

1 X Y 
2 X Y 
 
Benchmarking Approaches: To evaluate the efficacy of the 
proposed method, comparisons were made against con-
ventional regression techniques. Linear models, neural 
networks, and ensemble-based models are widely utilized 
for regression tasks. However, given the sparse nature of 
the generated attributes, ensemble methods were omitted 
as they are less effective in handling high-dimensional 
sparse data. Instead, the performance was assessed using 
linear regression (LR) and a deep learning model (DNN) 
featuring a multi-layer perceptron (MLP) structure with a 
constrained monotonic transformation in the final layer, 
as discussed in Section 3.2.2. The suggested framework is 
denoted as the GE model throughout the experimental as-
sessments. 

The architecture of the DNN model consists of two lay-
ers, each employing an embedding dimension of 256. Sim-
ilarly, the graph-based model maintains a two-layer 
depth, allowing each labeled merchant to integrate infor-
mation from direct consumers (one-hop connections) and 
merchants sharing common customers (two-hop connec-
tions). The embedding size remains fixed at 256. Key hy-
perparameters, including the learning rate and penalty 
terms, were fine-tuned using a grid search approach. 

A stratified random sampling technique was employed, 
with 80% of the merchant data allocated for model train-
ing and the remaining 20%  utilized for validation. The 
models were evaluated based on standard regression per-
formance indicators, with the results displayed in Table 3. 

Table 3:   Comparison of Mean Absolute Error (MAE) between 
regression models.  

Dataset Model MAE 
1 LR 0.1432 
 DNN 0.1404 
 GE 0.1357 
2 LR 0.1441 
 DNN 0.1409 
 GE 0.1361 

4. Predictive modeling evaluation 
Empirical validation was performed on real-world trans-
action data obtained from controlled online trials. To 
measure predictive accuracy, Mean Absolute Error (MAE) 
and Root Mean Squared Error (RMSE) were employed as 
standard performance metrics. While these indicators do 
not directly quantify the model's effectiveness in 
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identifying individual merchant responsiveness, they pro-
vide insights into its overall predictive reliability across 
diverse treatment strategies. 

Given table presents the evaluation findings. The deep 
learning model (DNN) demonstrates superior MAE per-
formance relative to linear regression but exhibits a 
slightly elevated RMSE, implying higher variance. The in-
corporation of a constrained monotonic mapping layer 
within the DNN model contributes to mitigating overfit-
ting while improving generalizability. However, its capac-
ity to capture subtle variations across merchants remains 
constrained. The graph-based embedding (GE) model out-
performs both benchmarks in terms of MAE and RMSE, re-
inforcing its strength in capturing transaction patterns 
and modeling incentive responses. 

5. Analysis of sensitivity to incentives 
Further investigation was conducted on the estimated 
gradient, to understand how merchants react to varying 
incentive levels [5]. This gradient acts as a proxy for mer-
chant sensitivity to marketing strategies, delineating the 
response-incentive curve. Ensuring precise estimation of 
these gradients remains a crucial objective. 

Unlike direct numerical validation, the accuracy of gra-
dient estimations was examined through comparative as-
sessment [4]. A well-trained model should effectively dif-
ferentiate between merchants with distinct sensitivities, 
wherein those categorized as highly responsive exhibit 
greater improvements in commercial activity under en-
hanced incentive treatments. 

Merchant transactional performance under differing in-
centive allocations is denoted as 𝑦𝑦ℎ (higher incentive) and 
𝑦𝑦𝑙𝑙  (lower incentive), respectively. The improvement in 
performance, termed as uplift gain, is computed as 𝑢𝑢 =
𝑦𝑦ℎ − 𝑦𝑦𝑙𝑙. Merchants classified as more responsive to incen-
tives should display higher uplift values relative to those 
categorized as less sensitive [6]. 

To validate this approach, the test dataset was utilized 
to infer gradients per merchant, followed by sorting in de-
scending order. This enabled the segmentation of mer-
chants into two groups: highly sensitive and less respon-
sive categories, designated as Ω+and Ω−, respectively. The 
model's effectiveness in optimizing incentives was as-
sessed based on its ability to accurately differentiate be-
tween these groups. 

For the highly responsive category ( Ω+), the uplift gain 
was determined as 𝑢𝑢+ = 𝑦𝑦ℎ+ − 𝑦𝑦𝑙𝑙+ , whereas for the less 
sensitive category (Ω−), the corresponding uplift was de-
noted as 𝑢𝑢−. An ideal model would exhibit a significant dif-
ference between 𝑢𝑢+and 𝑢𝑢−. As depicted in Figure 3, the GE 
model yields a markedly greater uplift difference com-
pared to the DNN model, underscoring its superiority in 
capturing variations in merchant responsiveness [9]. 
 
 

Since linear regression does not generate personalized 
gradients, its results were omitted from this analysis. For 
both DNN and GE models, merchants in the test set were 
ranked based on inferred gradients and divided into five 
equally sized cohorts. The GE model consistently sur-
passes the DNN model for the most responsive merchants 
[17]. However, for the least sensitive cohort, the GE model 
exhibits a flatter response-incentive curve, suggesting a 
refined understanding of merchants with minimal reac-
tion to incentives. 

6. Digital platform deployment results 
The developed model was implemented within a mobile 
transaction ecosystem using an industry-standard A/B 
testing methodology. Initially, the test group encom-
passed 1% of merchants, with data being recorded for five 
consecutive days. The exposure rate was then progres-
sively increased to 2.5%, 5%, and 15%, maintaining the 
same observation period for each stage. Ultimately, from 
January 10th to January 14th, A/B testing scaled up to 
30% of traffic, serving as the conclusive evaluation phase 
before broader implementation. 

During the experiment, millions of users engaged with 
the platform under the 30% traffic condition. The effec-
tiveness of the marketing approach was assessed based on 
expenditure optimization and two key performance indi-
cators: Metric 1, which quantifies the average payment 
frequency per merchant, and Metric 2, measuring the av-
erage number of days with at least one transaction per 
merchant. 

Table 4 showcases the percentage-based comparative 
improvements of the graph-embedded (GE) model over 
the deep neural network (DNN) model at the 30% traffic 
threshold. A confidence interval of 95%  is provided, 
demonstrating a 2.71% decrease in promotional expendi-
tures while yielding statistically significant enhancements 
in the business performance indicators, with p -values 
confirming high confidence in the observed effects. 

Table 4:   Performance improvement (%) of GE model over 
DNN model at 30% traffic exposure.  

Model 
Cost Reduction 
(%) Metric 1 (%) Metric 2 (%) 

Baseline - - - 
GE Model -2.71% [-

3.06%,-2.36%] 
[+0.28% 
[0.04%,0.52%] 

+0.29% 
[0.04%,0.54%] 

 
Figure 3 illustrates the observed trajectory of relative per-
formance gains across the two business objectives, follow-
ing the adoption of the GE model's optimization strategy. 
The rising trend suggests a steady improvement in overall 
transactional outcomes, potentially attributed to mer-
chants adapting their behavior in response to incentive-
driven marketing initiatives. 
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Figure 3. Relative performance enhancement on business ob-

jectives (30% traffic exposure). 

7. Conclusion 
This research introduces a refined approach to tackling 
marketing optimization challenges within large-scale mo-
bile financial ecosystems. To the best of available 
knowledge, this represents the pioneering application of 
graph-based neural learning within a real-world commer-
cial marketing infrastructure. The framework prioritizes 
the identification of merchants exhibiting heightened re-
ceptiveness to promotional interventions by leveraging 
transaction network structures through advanced repre-
sentation learning methodologies. 

To counteract fluctuations induced by limited exposure 
groups, a structured linear mapping function has been in-
corporated, ensuring robustness in feature extraction. Ad-
ditionally, uplift gains have been established as an innova-
tive metric for model assessment, facilitating optimized 
decision-making and enhanced resource allocation by 
minimizing inefficiencies associated with traditional mar-
keting strategies. 

Comprehensive evaluation was carried out using an 
A/B testing framework spanning multiple weeks. The em-
pirical findings consistently validate the superiority of the 
proposed methodology in boosting marketing efficiency 
and amplifying commercial outcomes within mobile pay-
ment ecosystems. 
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