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ABSTRACT

In the rapidly evolving digital payment ecosystem, optimizing merchant incentives has become a stra-
tegic necessity for increasing transaction volume, improving platform loyalty, and fostering sustaina-
ble customer engagement. Traditional incentive schemes often rely on heuristic or fixed-rate models
that fail to account for the dynamic and heterogeneous nature of merchant behavior. To address these
limitations, this study introduces a novel data-driven framework that employs graph-based represen-
tation learning to model and analyze complex transactional interdependencies among merchants and
consumers. By capturing structural and behavioral similarities through graph neural networks
(GNNs), the proposed approach enables precise prediction of each merchant’s sensitivity to diverse
incentive strategies. The model integrates transaction frequency, geographical proximity, and cus-
tomer overlap to generate interpretable embeddings that guide optimized budget distribution under
financial constraints. Through an integrated optimization layer, incentives are allocated based on pre-
dicted responsiveness, ensuring that marketing expenditures are directed toward high-impact seg-
ments. Real-world experiments conducted on large-scale digital payment datasets validate the frame-
work’s effectiveness, demonstrating substantial improvements in merchant participation rates, trans-
action growth, and cost efficiency compared to baseline regression and deep learning models. The
findings highlight the potential of combining machine learning, network science, and marketing ana-
lytics to design more adaptive and data-intelligent promotional systems, thereby paving the way for
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scalable and targeted incentive management in next-generation digital financial platforms.
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1. Introduction

The proliferation of digital transaction platforms, includ-
ing Alipay and Apple Pay, has reshaped financial interac-
tions in contemporary society [1]. A key goal for mobile
payment providers is to expand their user base, fostering
a shift from conventional payment methods to digital al-
ternatives for both businesses and consumers.

To drive adoption, service operators deploy various
promotional tactics, primarily through merchant-based
incentives. These incentives, encompassing commission
structures, discount vouchers, and supplementary busi-
ness services, are tailored to encourage vendors to pro-
cess payments via designated digital platforms [2]. For ex-
ample, Alipay assigns a distinct incentive QR code to each
vendor, enabling them to extend rewards to customers.
These rewards can be availed solely through Alipay trans-
actions, and in exchange, merchants accumulate commis-
sions based on the volume of successfully redeemed in-
centives [3].

This framework, in which benefits are initially distrib-
uted to customers and subsequently reclaimed through
transaction completions, establishes a model where
higher payment activity directly correlates with increased
merchant revenue [4].

Historically, commission structures for merchants have
relied on predefined allocation strategies. However, mer-
chant engagement with incentives varies considerably.
Certain vendors demonstrate a strong dependency
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between commission rates and transaction frequencies,
whereas others exhibit minimal responsiveness to fluctu-
ating incentive levels. Accurately identifying merchants
with pronounced sensitivity to promotional offers is es-
sential for optimizing marketing expenditure within pre-
defined financial limits [5].

Modeling the dependency between promotional incen-
tives and transaction frequency introduces several com-
plexities. The prolonged impact of incentives on merchant
engagement must be accounted for, as vendors may only
perceive substantial benefits after prolonged participa-
tion [2]. Additionally, financial constraints restrict the fea-
sibility of conducting exhaustive empirical evaluations to
comprehensively define the incentive-response function
for every merchant [4].

Instead, an experimentally constrained methodology is
frequently utilized, where predetermined incentive val-
ues, sampled from a fixed distribution (e.g, 1, 2, 5, 10, 20
units of currency), are randomly assigned, followed by an
observation of transactional responses [3].

Two principal obstacles emerge in this setting. Firstly,
an effective representation learning approach is neces-
sary to cluster merchants based on their responsiveness
to incentives, allowing for robust statistical inference of
incentive-response relationships within these groups [6,
7]. Secondly, the incentive transaction dependency for in-
dividual vendors can exhibit intricate patterns,

This work is licensed under a Creative Commons CC BY-NC 4.0 License.

© 2025 by author and REPA - Research and Education Promotion Association


https://doi.org/10.37357/1068/JBMR/5.1.01
http://crossmark.crossref.org/dialog/?doi=10.37357/1068/JBMR/5.1.01&domain=pdf

2025, 1 (1): 1-6, DOI 10.37357/1068/JBMR/5.1.01

necessitating the incorporation of informed prior
knowledge to mitigate estimation variability [8].

This research introduces a graph-based learning frame-
work to enhance the optimization of merchant rewards in
digital payment marketing. Vendor behavior is analyzed
through customer purchasing trends, extracting meaning-
ful insights from geographical transaction distributions.
The evaluation of incentive-response relationships, de-
rived from real transactional datasets, reveals that trans-
action frequencies demonstrate a linear and consistentin-
crease with rising incentive levels. Experimental valida-
tion substantiates the efficacy of this methodology, show-
casing enhanced marketing performance. Finally, the
problem of distributing incentives under financial limita-
tions is formulated as an optimization problem [5], lever-
aging a linear programming approach [3], with empirical
testing conducted through real-world deployment on the
Alipay platform.

2. Background

This section presents a concise review of relevant litera-
ture, emphasizing two core areas: dynamic pricing meth-
odologies and graph-based feature learning. These princi-
ples serve as the basis for the proposed strategy.

2.1. Dynamic pricing strategies

Dynamic pricing utilizes analytical techniques to tackle
two fundamental issues: (1) forecasting consumer reac-
tions to diverse pricing schemes [2,3]; and (2) formulating
optimal price points to fulfill business objectives [4,5].
These techniques allow businesses to evaluate promo-
tional effectiveness and identify strategic price settings to
enhance revenue within specified timeframes.

The framework of dynamic pricing is generally com-
posed of two key phases. Initially, predictive models lev-
eraging machine learning algorithms are applied to esti-
mate product demand [8], infer purchasing tendencies
from incomplete transaction datasets, or analyze histori-
cal sales data to anticipate future market behavior. Subse-
quently, these estimations are integrated into optimiza-
tion models designed to establish pricing mechanisms
that align with corporate objectives [5,9].

In the domain of mobile financial transactions, service
providers adopt an analogous approach, striving to ex-
pand user engagement by incentivizing specific payment
platforms [2]. Conventional studies predominantly rely on
linear regression models to capture sales trends [4]. How-
ever, evaluating merchant receptivity to varying incentive
structures introduces a distinctive challenge [5].

Accurately determining incentive responsiveness
across a vast network of merchants, particularly under
constraints of limited data availability, remains an under-
explored subject. This research proposes a novel mecha-
nism for quantifying merchant-specific incentive adapta-
bility, extending beyond traditional dynamic pricing
methodologies.
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2.2. Graph-based representation learning

Graph-based representation learning has gained substan-
tial attention, particularly with the advent of graph neural
networks (GNNs) [6,7,10], which encapsulate subgraph
structures into latent embeddings. Consider an undirected
graph G = (V,E) where V represents a set of N nodes,
and E consists of |E| edges (i,j). The graph structure is
defined by a sparse adjacency matrix A € RV*Y, anode at-
tribute matrix X € RV*?, and a graph Laplacian operator
formulatedas L = I — D~*/2AD~'/2, These techniques uti-
lize local neighborhood aggregation to construct informa-
tive node embeddings.

An influential framework, GraphSAGE, introduced a
mechanism for aggregating neighboring node information
via different pooling operations [6]. The general update
rule can be described as:

H®D = 6(CONCAT(¢(A, HO), HO)W®) (D

where H® € RY*K denotes the hidden layer representa-
tion at depth t, initially set as H® = X. The transfor-
mation matrix W® is trained for each layer, o represents
a non-linear activation function, and i (-) is a neighbor-
hood aggregation function, such as mean or max pooling.
By stacking multiple layers, the model assimilates infor-
mation from broader graph neighborhoods, enhancing
node embeddings.

To improve adaptability, attention-based strategies
have been introduced, enabling dynamic neighborhood
weighting based on relevance. Additionally, path-based
filtering methods have been explored to refine aggrega-
tion regions, allowing models to learn more discriminative
node representations. These methodologies have demon-
strated superior performance across various benchmark
datasets, making them instrumental in diverse applica-
tions.

Within the domain of mobile transaction networks,
GNNs are employed to encode merchant characteristics
based on consumer purchasing patterns [11, 12]. This
technique helps uncover variations in customer engage-
ment, yielding structured embeddings that effectively de-
scribe merchant behaviors. Merchants with a wider cus-
tomer reach generally exhibit stronger transaction activ-
ity, while those catering to niche demographics often dis-
play lower responsiveness to promotional incentives. Fur-
thermore, spatial proximity frequently results in cus-
tomer overlap, leading to comparable merchant incentive
adoption patterns.

By structuring transactional relationships through
graph-based modeling, an optimized strategy for incen-
tive allocation can be systematically developed, as ex-
plored in subsequent sections.

2.3. Online experimentation and sensitivity analysis

To evaluate the influence of financial incentives on mer-
chant engagement, a controlled online study was carried
out, wherein varying incentive magnitudes were
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randomly allocated [5]. This methodology facilitated the
derivation of the objective-incentive function, capturing
how business metrics evolve in response to incentive
modifications. Data collection was performed across sev-
eral days, incorporating a diverse range of merchants
transacting on the platform [3].

Given that each merchant's reaction to incentives is ob-
servable under only one experimental condition at any
given moment, extrapolating these reactions to merchants
with similar characteristics becomes essential [9]. It is
postulated that merchants exhibiting comparable transac-
tional patterns display analogous responsiveness to finan-
cial stimuli. Regional trends in sensitivity are depicted in

Figure 1, highlighting that neighboring regions often ex-
hibit correlated behaviors. This observation underscores
the utility of graph-based learning models in capturing
such structural relationships.

@ ]
®

L1
&L
g o g .ﬁ,*l
a? .1_?" :’1‘3
o gl v
o® n’-

Figure 1. Regional variations in incentive responsiveness. The

x-axis and y-axis correspond to longitude and lati-
tude, respectively. Higher values indicate increased
sensitivity to financial incentives.

2.4. Graph neural network-based framework

Graph neural networks (GNNs) are employed to model in-
terdependencies among merchants by constructing a
transaction-based network [6,7]. This network is defined
as G = (V,E), where V comprises merchants and custom-
ers, while E denotes financial transactions. An adjacency
matrix A € {0,1}"*V is formulated, where 4;; = 1 signi-
fies an interaction between nodes i and j [13].

Merchant-specific features X € RV*F encode business
attributes, while transaction-related attributes Z € RIEIXP
encapsulate details of financial exchanges [9]. The GNN
propagates information iteratively through the following
update mechanism:

hi(t+1) _ G(W(t)TlIJ ({h]’(t) lj € N(i) U i}; e)) (2)

where hl@ represents the feature embedding at layer ¢, o
is a non-linear activation function, and Y (+) is an aggrega-
tion operator parameterized by 6. Initial feature embed-
dings are initialized as follows:

0
h? = WIX; + Ziency WaZgj ©

2.5. Monotonic mapping and optimization strategy

The learned merchant embeddings from the GNN are
mapped to an objective-incentive function through a con-
strained transformation [10]:

£, c) = c - SOFTPLUS(WTh(™) + RELU(WTh™) (4

where W, and W, project the embeddings into parame-
ters defining the gradient and intercept of the mapping
function. This ensures a monotonic relationship between
incentives and business performance, where the gradient
g; characterizes responsiveness [14].

To determine optimal parameters B =
{W, w,w,,8o, Wy, W;,}, the following loss function is mini-
mized:

min X L(FCL ¢ B), yic) )

where L(-) denotes the mean absolute error between pre-
dicted and actual business performance outcomes y; ..
Model training is executed using the ADAM optimization
algorithm with mini-batch updates in TensorFlow [15,16].

MLM & Loss

Orignal Input Graph

Layer 1 of GNN Layer 2 of GNN

Figure 2. Graph neural network architecture integrating mon-
otonic mapping for incentive impact estimation.

2.6. dataset overview

The characteristics of the datasets employed in the exper-
imentation are outlined in Table 1 [2,4].

Table 1: Overview of datasets used for experimentation.

Dataset \4] |E| Node Attributes Edge Attributes Labeled Samples
D1 90.08X 1076 161.7 X10"6 4998 86 2.18X10”6

D2 97.18X 1076 172.1X10"6 4998 86 2.31X10"6

J Bus Manage Rev 2025, 1 (1): 1-6

www.repaus.org/journals/jomr



Ajmal H | Journal of Business and Management Revolution

2.7. Optimized incentive allocation via linear program-
ming

The allocation of incentives is structured as a linear pro-
gramming task, utilizing the estimated function g(i, c) [3].
The objective is to allocate the most beneficial interven-
tion to each vendor while adhering to a budgetary limita-
tion [4].

max Y. g(i, )b’ (i, c) (6)
subject to:
Yieb'(be) c<B )

where the best intervention m satisfies:
m = arg maxg(i,c)-c- U (8)
C

with u representing the optimal dual variable. The effec-
tiveness of this methodology is validated within Alipay's
digital framework, with findings detailed in the next seg-
ment.

3. Experimental evaluation

This segment provides a comprehensive analysis of the
system's efficiency. First, offline performance is scruti-
nized using datasets derived from digital trials. Subse-
quently, online evaluation is conducted by implementing
the proposed framework within Alipay and comparing it
againsta multi-layer perceptron model that adopts the op-
timal strategy elaborated in Section 3.3. Due to confiden-
tiality constraints, certain numerical specifics that might
be deemed sensitive are not revealed.

3.1. Experimental configuration

This section elaborates on the dataset employed for train-
ing the model and the corresponding experimental set-
tings [2].

Data Acquisition: The datasets originate from two dis-
tinct digital trials conducted over a span of 15 days each.
Data gathering involved the arbitrary selection of 0.2% of
vendors, who were then categorized into different test
groups, each subjected to a predefined intervention. In to-
tal, 13 experimental groups were designed, each corre-
sponding to a distinct treatment to maintain an impartial
allocation of merchants based on their responsiveness to
promotional strategies [15].

The datasets encompass over two million tagged ven-
dors, with recorded business performance indicators,
such as the volume of transactions finalized within the
subsequent three days and the number of active days with
completed sales in the same duration. The model is struc-
tured on a transactional network, where links symbolize
interactions between labeled merchants and their two-
hop vicinity. This incorporates direct exchanges between
merchants and customers, as well as secondary interac-
tions involving clients and additional vendors. The result-
ant transactional network comprises over 90 million enti-
ties, encompassing merchants and consumers, with
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hundreds of millions of transactional connections. A sum-
mary of the datasets utilized in offline trials is depicted in
Table 2. Data from two separate timeframes were exam-
ined to validate the consistency of the observations.

Table 2: Overview of experimental datasets.
Number of Transac-
Dataset Number of Vendors tions
1 X Y
2 X Y

Benchmarking Approaches: To evaluate the efficacy of the
proposed method, comparisons were made against con-
ventional regression techniques. Linear models, neural
networks, and ensemble-based models are widely utilized
for regression tasks. However, given the sparse nature of
the generated attributes, ensemble methods were omitted
as they are less effective in handling high-dimensional
sparse data. Instead, the performance was assessed using
linear regression (LR) and a deep learning model (DNN)
featuring a multi-layer perceptron (MLP) structure with a
constrained monotonic transformation in the final layer,
as discussed in Section 3.2.2. The suggested framework is
denoted as the GE model throughout the experimental as-
sessments.

The architecture of the DNN model consists of two lay-
ers, each employing an embedding dimension of 256. Sim-
ilarly, the graph-based model maintains a two-layer
depth, allowing each labeled merchant to integrate infor-
mation from direct consumers (one-hop connections) and
merchants sharing common customers (two-hop connec-
tions). The embedding size remains fixed at 256. Key hy-
perparameters, including the learning rate and penalty
terms, were fine-tuned using a grid search approach.

A stratified random sampling technique was employed,
with 80% of the merchant data allocated for model train-
ing and the remaining 20% utilized for validation. The
models were evaluated based on standard regression per-
formance indicators, with the results displayed in Table 3.

Table 3: Comparison of Mean Absolute Error (MAE) between
regression models.
Dataset Model MAE
1 LR 0.1432
DNN 0.1404
GE 0.1357
2 LR 0.1441
DNN 0.1409
GE 0.1361

4. Predictive modeling evaluation

Empirical validation was performed on real-world trans-
action data obtained from controlled online trials. To
measure predictive accuracy, Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) were employed as
standard performance metrics. While these indicators do
not directly quantify the model's effectiveness in
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identifying individual merchant responsiveness, they pro-
vide insights into its overall predictive reliability across
diverse treatment strategies.

Given table presents the evaluation findings. The deep
learning model (DNN) demonstrates superior MAE per-
formance relative to linear regression but exhibits a
slightly elevated RMSE, implying higher variance. The in-
corporation of a constrained monotonic mapping layer
within the DNN model contributes to mitigating overfit-
ting while improving generalizability. However, its capac-
ity to capture subtle variations across merchants remains
constrained. The graph-based embedding (GE) model out-
performs both benchmarks in terms of MAE and RMSE, re-
inforcing its strength in capturing transaction patterns
and modeling incentive responses.

5. Analysis of sensitivity to incentives

Further investigation was conducted on the estimated
gradient, to understand how merchants react to varying
incentive levels [5]. This gradient acts as a proxy for mer-
chant sensitivity to marketing strategies, delineating the
response-incentive curve. Ensuring precise estimation of
these gradients remains a crucial objective.

Unlike direct numerical validation, the accuracy of gra-
dient estimations was examined through comparative as-
sessment [4]. A well-trained model should effectively dif-
ferentiate between merchants with distinct sensitivities,
wherein those categorized as highly responsive exhibit
greater improvements in commercial activity under en-
hanced incentive treatments.

Merchant transactional performance under differing in-
centive allocations is denoted as y;, (higher incentive) and
vy, (lower incentive), respectively. The improvement in
performance, termed as uplift gain, is computed as u =
Yn, — ¥;- Merchants classified as more responsive to incen-
tives should display higher uplift values relative to those
categorized as less sensitive [6].

To validate this approach, the test dataset was utilized
to infer gradients per merchant, followed by sorting in de-
scending order. This enabled the segmentation of mer-
chants into two groups: highly sensitive and less respon-
sive categories, designated as Q*and Q, respectively. The
model's effectiveness in optimizing incentives was as-
sessed based on its ability to accurately differentiate be-
tween these groups.

For the highly responsive category ( %), the uplift gain
was determined as u* = y; —y;*, whereas for the less
sensitive category (Q7), the corresponding uplift was de-
noted as u™. An ideal model would exhibit a significant dif-
ference between u*and u . As depicted in Figure 3, the GE
model yields a markedly greater uplift difference com-
pared to the DNN model, underscoring its superiority in
capturing variations in merchant responsiveness [9].
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Since linear regression does not generate personalized
gradients, its results were omitted from this analysis. For
both DNN and GE models, merchants in the test set were
ranked based on inferred gradients and divided into five
equally sized cohorts. The GE model consistently sur-
passes the DNN model for the most responsive merchants
[17]. However, for the least sensitive cohort, the GE model
exhibits a flatter response-incentive curve, suggesting a
refined understanding of merchants with minimal reac-
tion to incentives.

6. Digital platform deployment results

The developed model was implemented within a mobile
transaction ecosystem using an industry-standard A/B
testing methodology. Initially, the test group encom-
passed 1% of merchants, with data being recorded for five
consecutive days. The exposure rate was then progres-
sively increased to 2.5%, 5%, and 15%, maintaining the
same observation period for each stage. Ultimately, from
January 10th to January 14th, A/B testing scaled up to
30% of traffic, serving as the conclusive evaluation phase
before broader implementation.

During the experiment, millions of users engaged with
the platform under the 30% traffic condition. The effec-
tiveness of the marketingapproach was assessed based on
expenditure optimization and two key performance indi-
cators: Metric 1, which quantifies the average payment
frequency per merchant, and Metric 2, measuring the av-
erage number of days with at least one transaction per
merchant.

Table 4 showcases the percentage-based comparative
improvements of the graph-embedded (GE) model over
the deep neural network (DNN) model at the 30% traffic
threshold. A confidence interval of 95% is provided,
demonstrating a 2.71% decrease in promotional expendi-
tures while yielding statistically significant enhancements
in the business performance indicators, with p -values
confirming high confidence in the observed effects.

Table 4: Performance improvement (%) of GE model over
DNN model at 30% traffic exposure.
Cost Reduction
Model (%) Metric 1 (%) Metric 2 (%)
Baseline - - -
GE Model -2.71% [- [+0.28% +0.29%

3.06%,-2.36%] [0.04%,0.52%] [0.04%,0.54%)]

Figure 3 illustrates the observed trajectory of relative per-
formance gains across the two business objectives, follow-
ing the adoption of the GE model's optimization strategy.
The rising trend suggests a steady improvementin overall
transactional outcomes, potentially attributed to mer-
chants adapting their behavior in response to incentive-
driven marketing initiatives.

www.repaus.org/journals/jomr



2025, 1 (1): 1-6, DOI 10.37357/1068/JBMR/5.1.01

0425 Belative improvement (%] On Ohjecthel #
_ —— Ralative Improvemant (%) On Objected L
F n.400
= e
Eoams P -

- o,
; 0350 o %,
&
Enazs
v n “E
Zonaoa{ W s, g
] A 4
= 0275 " e,
\.\"'-— -~
0.250
A o A ! Y
P L Pe- o o
o St 0 .‘6‘. o

Figure 3. Relative performance enhancement on business ob-
jectives (30% traffic exposure).

7. Conclusion

This research introduces a refined approach to tackling
marketing optimization challenges within large-scale mo-
bile financial ecosystems. To the best of available
knowledge, this represents the pioneering application of
graph-based neural learning within a real-world commer-
cial marketing infrastructure. The framework prioritizes
the identification of merchants exhibiting heightened re-
ceptiveness to promotional interventions by leveraging
transaction network structures through advanced repre-
sentation learning methodologies.

To counteract fluctuations induced by limited exposure
groups, a structured linear mapping function has been in-
corporated, ensuring robustness in feature extraction. Ad-
ditionally, uplift gains have been established as an innova-
tive metric for model assessment, facilitating optimized
decision-making and enhanced resource allocation by
minimizing inefficiencies associated with traditional mar-
keting strategies.

Comprehensive evaluation was carried out using an
A/B testing framework spanning multiple weeks. The em-
pirical findings consistently validate the superiority of the
proposed methodology in boosting marketing efficiency
and amplifying commercial outcomes within mobile pay-
ment ecosystems.
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